
A cloud queuing service
with strong consistency
and high availability

Z. Zhang
Y. Wang
H. Chen
M. Kim

J. M. Xu
H. Lei

Message queues are widely used to connect loosely coupled
components to form large-scale, highly distributed, and fault-tolerant
applications. A number of vendors currently provide cloud-based
queuing services that are designed to be elastic, scalable, and easy
to use. However, unlike enterprise queuing systems, which provide
strong queuing consistency and are suitable for many traditional
enterprise workloads, these cloud-based queuing services offer
reduced queuing consistency. They can deliver messages without
loss, but they may deliver messages out of order or with duplications.
This paper presents SilverDove Queuing Service (SDQS), a scalable
cloud-based queuing service with stronger consistency than
existing cloud-based queuing services. SDQS delivers messages
without losses or duplications and provides in-order message
delivery as an option. Built on top of IBM WebSphereA eXtreme
Scale, i.e., an elastic in-memory object grid system, SDQS can be
easily scaled up and down to accommodate a wide range of
workloads. SDQS is able to provide high availability with either
the no-order or the in-order message delivery option. We have
performed a preliminary evaluation of SDQS with up to 70 nodes
on a compute cloud platform, verifying its consistency offerings
and providing insights into the tradeoff between performance
and consistency.

Introduction
As computing reaches every corner of people’s daily lives,
including business informatics, personal entertainment,
and real-world event sensing, the scale and complexity of
software systems grow exponentially. Coming with this trend
is the critical challenge to provide reliable, efficient, and
flexible mechanisms for large-scale distributed computing
components or applications to communicate with one
another. One of the most widely adopted interapplication
communication patterns is asynchronous message exchanges
through message queues.
A message queue decouples the two communicating

parties from each other. It provides temporary storage
when the destination application is busy or suffering
from poor connectivity. It reduces the involvement of
application developers with the complexity of handling
the communication mechanisms. It also simplifies the

development, deployment, and management of complex
distributed applications that span multiple heterogeneous
operating systems and network protocols. Exemplary
applications that can benefit from message queues include
workload dispatching/load balancing, MapReduce [1]-like
pipelined processing, distributed workflow management,
and information aggregation/dissemination, to name just a
few. In addition to being used for asynchronous message
exchange, message queues may also be used to support
synchronous request–response communication patterns
that are common in traditional enterprise application
integration. A typical usage scenario is the supporting of
Simple Object Access Protocol over Java** Message
Service.
With the advent of advanced virtualization technology,

many enterprises are adopting cloud computing to reduce
their capital and operational expenditure. Along with
the trend comes the imperative to provide message queuing
(MQ) as a common cloud service that can be consumed by

�Copyright 2011 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Z. ZHANG ET AL. 10 : 1IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

0018-8646/11/$5.00 B 2011 IBM

Digital Object Identifier: 10.1147/JRD.2011.2172312

multiple tenant organizations and applications. In order
to fully realize the benefit of cloud computing and to
accommodate the rapidly growing and highly dynamic
workloads from today’s data-intensive applications, a
cloud-based MQ service should be highly reliable and highly
elastic while providing good performance.
A common approach adopted by many cloud-based

queuing service providers focuses on lower cost, elasticity,
and availability as the main design objectives while relaxing
queuing semantics. Examples include Amazon’s Simple
Queue Service (SQS) [2] and the Microsoft Windows**
Azure Queue [3]. These services trade the strict semantics
of a queue for improved availability and scalability.
Although they can deliver messages without losses, a
substantial number of messages may be delivered
out-of-order, and some can even be duplicates. Since much
of the queuing semantics [e.g., first-in–first-out (FIFO)] is
not provided, these services are arguably more similar to
data storage services than queuing services. As such, they are
unable to meet the messaging needs of many applications.
They are only appropriate for a distributed workload that
is idempotent and order insensitive. An often cited example
is a media sharing website, where queues are used to
connect a web front end (where user-generated content is
uploaded) and a data processing back end (where necessary
format conversion and filtering are performed before the
media data is stored). In this case, maintaining absolute order
is not required, and occasional duplicate messages result
in only a slight waste of computation resources but do not
cause functional errors.
On the other hand, traditional enterprise-class MQ

systems, such as IBM WebSphere* MQ and Microsoft
MSMQ, and Apache ActiveMQ**, offer excellent system
performance and various other desirable features such
as exactly once delivery, FIFO message ordering,
and distributed transaction support. These messaging
middlewares play an important role in applications that
cannot tolerate message duplication or require strict FIFO
delivery order. Many financial applications fall into this
category. To enable these types of applications to be
eventually migrated to a cloud environment and thus realize
the cloud computing benefits, it is important to provide a
highly available and scalable queuing service with strict
queuing consistency. We note that with the strict queuing
consistency offerings comes the inevitable tradeoffs that
one would have to make in other metrics, such as
performance or availability. Therefore, it is also highly
desirable for a queuing service to provide applications with
options for selecting only the necessary queuing consistency
level so that the service can maximize the level of other
nonfunctional qualities.
Toward this end, this paper presents the design and

evaluation of a cloud-based queuing service code-named
SilverDove Queuing Service (SDQS). SDQS is built on top

of IBM WebSphere eXtreme Scale [4], which is an elastic
in-memory data grid system. Although WebSphere eXtreme
Scale provides high storage consistency, it is a challenging
task to provide high queuing consistency on top of it.
SDQS overcomes the challenge by using a queue indexing
approach and a visibility-timeout mechanism. With no
failures in network transport and client applications, SDQS
is able to provide exactly once message delivery, i.e., no loss
or duplication, while offering two kinds of message order
options to end users, which can be selected when establishing
queues in the system. This represents stronger consistency
than existing cloud-based offerings, approaching that of
a traditional enterprise queuing product. Additionally, SDQS
provides high availability and elasticity. We point out that
end-to-end strong consistencies under all failure conditions
are not currently provided by SDQS. Please refer to the
ensuing sections for more detailed discussions.
The main contribution of this paper is twofold. First,

it presents a cloud-based scalable queuing service, which
to our best knowledge is the first in its kind capable of
providing exactly once message delivery in FIFO order.
Second, through evaluation, it quantitatively compares SDQS
to other representative queuing services and validates its
queuing consistency and high availability. We note that
SDQS is a research prototype designed to investigate
the possibility of providing strong queuing consistency
with high availability. It does not represent the official
product plan or roadmap of IBM in the area of cloud-based
messaging.
The remainder of this paper is organized as follows.

Background knowledge and related work are introduced
in the next section, which is followed by a description of
the system architecture and design. The following section
provides the details of the implementation, evaluation
methodology, and results. The final section concludes
this paper.

Background and related work
In this section, we provide an overview of message queues
and examine two classes of MQ offeringsVtraditional
enterprise MQ products and emerging cloud-based MQ
services. We also describe a few distributed storage
mechanisms that are related to cloud-based MQ.

Message queue and its consistency
Abstractly speaking, a queue is a linear data structure
with two endsVa head and a tail. Data items can only be
added to the queue (enqueued) at the tail end and removed
from the queue (dequeued) at the head end. On a single
host, queues are easily implemented and are often provided
as part of the standard collections that are packaged in
many program languages. It allows two communicating
entities to exchange messages with strong queuing
consistency: exactly once delivery and FIFO order.

10 : 2 Z. ZHANG ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

Supporting strong consistency may require sophisticated
protocols, when queues are used in distributed environments
with multiple programs running on multiple hosts.
Otherwise, weak queuing consistency may occur, which
manifests in three different ways. First, messages may be
lost. Second, messages may be delivered more than once.
Third, messages may be delivered out of order.
Roughly speaking, there are three failure scenarios

that will potentially cause reduced queuing consistency.
First, the transport (network link) between a client and the
queue may fail. Second, the clients may fail. Third, the queue
itself may fail. There are different ways of handling these
failure scenarios. We will see how they are dealt with in
the following two classes of queuing offerings.

Enterprise queuing products
A properly implemented message queue provides a means
for reliable asynchronous communication. It has become
a standard middleware used in distributed computing
environments. Many commercial vendors offer enterprise
MQ products. Examples include IBM WebSphere MQ [5],
Microsoft MQ (MSMQ), and Tibco Enterprise Messaging
Service. There are also a number of open-source or free
MQ products, such as Apache ActiveMQ, OpenMQ, and
RabbitMQ.
These enterprise-class queuing products typically support

strong queuing consistency. Clients usually connect to one
or more queue managers using a connection-oriented
protocol with transaction support to handle client and
network failures. Server failures are dealt with by persisting
messages on nonvolatile storage. Additionally, queues can be
made highly available by using redundant compute and
storage hardware, e.g., Redundant Array of Independent
Disks and active standby queue managers. For these reasons,
enterprise queuing products are widely used in applications
that require reliability and performance, e.g., banking and
finance, supply chain management, health care, and so on.
Enterprise queuing products also use clustering techniques

to provide additional throughput and scalability. A logical
queue can be partitioned into multiple segments on a cluster
of queue managers, as shown in Figure 1(a). Multiple
senders and receivers can connect to any one of the queue
managers to access the logical queue, thus achieving high
overall throughput.

Cloud-based queuing service with reduced consistency
Information technology service providers have been making
use of cloud technologies to deliver low-cost queuing
services with high scalability, availability, and elasticity.
This is achieved by adopting commonly used principles in
cloud environments [6]. First, they use standard server
hardware with standard networking and to avoid specialized
setups, such as separate storage area networks or expensive
high-end systems. Second, they use large pools of virtually

uniform hardware for high elasticity. Moreover, automating
the management of these large hardware pools further
reduces costs. Representative systems in this category
include the Amazon SQS [2] and the Microsoft Windows
Azure Queue [3]. Instead of trying to provide strong queuing
consistency using traditional enterprise queuing products
as the building blocks, the design points of these services
are high availability and elasticity, at the cost of reduced
queuing consistency.
Figure 1(b) shows a commonly used architecture of these

cloud-based queuing services. They are built on a cluster
of uniform commodity servers with locally attached storage
devices to ensure elasticity. Messages are replicated among
storage nodes to tolerate server failure and provide high
availability. When a client tries to retrieve messages from
a queue, a number of available storage nodes are sampled,
and the oldest messages are returned.
To enable a wide array of applications to access the

service, a client application programming interface (API)
is used that is based on Hypertext Transfer Protocol (HTTP).
In order to protect messages from being lost as a result
of either client or transport failure, these systems adopt a
mechanism called visibility timeout. When a client tries to
receive messages from a queue, the messages are returned
but not immediately deleted. They are locked and made
invisible to subsequent receive calls during a time window
known as visibility timeout. After successfully processing
the message, the client needs to issue an explicit delete
request before the timeout happens to delete the message.
If timeout happens before the delete request, the message
reappears in the queue.
Replication and the visibility-timeout-based transport

protocol protect the service from message loss under
all three failure scenarios described above, but they cannot
guarantee no duplication. Thus, the delivery mode is often
called at-least-once. Finally, the random sampling design
inherently cannot provide any order guarantee.

General-purpose distributed storage
Although, from a functional standpoint, queues are used
to provide messaging capability, they can also be viewed
as a special type of storage. In this regard, there is a large
body of related work in the area of distributed storage.
Distributed hash tables (DHTs) use structured overlays on
large numbers of servers to support fast lookups and
membership updates. DHTs, such as CHORD [7],
Pastry [8], and CAN [9], are widely used in peer-to-peer
environments.
Another category of a related system is distributed

in-memory cache that provides a low-latency buffer for
persistent storage in multitier web applications. Memcached
[10] is a widely used free software in the open-source
community. IBM WebSphere eXtreme Scale is a commercial
offering that provides a highly scalable fault-tolerant data

Z. ZHANG ET AL. 10 : 3IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

grid with substantial horizontal scaling capability, which
allows the performance of the system to increase by simply
adding more servers. While these distributed caches differ
from DHTs in how they organize the underlying data store,
in general, they all provide a key-value map programming
model to clients. Recently, more sophisticated data models
have been adopted in a number of distributed storage
systems, including BigTable (from Google) [11], HBase

(from Yahoo!) [12], Dynamo (from Amazon) [13], and
Cassandra (from Facebook) [14].
To obtain better scalability and performance, many

distributed storage systems choose to forgo the strong
consistency required by the traditional atomicity,
consistency, isolation, and durability model. Instead, they
adopt a relaxed Bbasically available, soft state, and eventual
consistency[[15] model.

Figure 1

Simplified view of possible system architectures for a cloud queuing service using (a) clustered enterprise queuing system and (b) replicated distributed
storage. In (a), which relates to an on-premises deployment of an enterprise queuing system, logical queues can be partitioned among multiple queue
managers in a cluster to provide better throughput and scalability. Clients typically connect to one or more known queue managers, and transactional
protocols are used to protect against client and transport failures. In (b), which relates to a typical cloud queuing service based on a replicated storage
system, message order is not preserved. A message is delivered at least once, i.e., duplication is possible. The service can survive up to R� 1
simultaneous node failures, where R is equal to the number of replicas.

10 : 4 Z. ZHANG ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

While many of these distributed storage systems offer
the desired qualities of a cloud-based service, they do not
offer a queue-based API to clients.

System design and architecture
As mentioned, in this paper, we present the SDQS, which is
a cloud-based queuing service providing stronger queuing
consistencies that approach enterprise queuing products.
Acknowledging the fact that higher consistency levels
require tradeoffs in other performance metrics, we also
include the ability for application clients to select in-order
delivery as an option in SDQS. Some earlier information in
this paper is repeated in this section as a reminder of the
important features.

Design rationale
As we discussed in the previous section, many cloud-based
systems, such as the Amazon SQS and the Microsoft
Windows Azure Queue, provide highly scalable, available,
and elastic queuing services at low cost. Additionally, these
systems offer reduced queuing consistencies, in which
messages can be delivered more than once and out of
FIFO order.
We note that the inconsistencies in existing cloud-based

queuing services are caused by two reasons. First, their
system design determines that the stored queues are
presented as inconsistent to the receiving clients. More
specifically, they replicate stored messages without enforcing
distributed locks. Therefore, multiple replicas of one
logical message can be delivered. They also use queue
partitioning and random sampling among multiple partitions
of a logical queue, causing out-of-order deliveries, as
illustrated in Figure 1(b). Second, they use HTTP REST
(representational state transfer) interfaces rather than
client-server transactional protocols. This introduces possible
duplicated or out-of-order message deliveries when a sending
or receiving client fails or is malfunctioning. Additionally,
broken connections in the HTTP protocol itself might cause
degraded queuing consistency. For instance, after a client
sends a message to SDQS, if the HTTP acknowledgement is
lost, the client will send the message again, causing message
duplication. It should be noted that, with the reliability
mechanisms of the underlying TCP/IP, HTTP message losses
occur only with major outages (e.g., caused by natural
disasters), where multiple redundant network routes
are destroyed. The probability of such outages is orders of
magnitude lower than the probability of server and client
failures.
As mentioned, in designing SDQS, we seek to approach

the consistency level of enterprise queuing products such
as IBM WebSphere MQ and Microsoft MSMQ, which
achieve exactly once and in-order message deliveries.
Additionally, we would like SDQS to retain the cost-effective
feature and the lightweight client interface of cloud-based

queuing services. Therefore, we focus on eliminating the
aforementioned server-side sources of queuing inconsistency
in cloud-based queuing services. Inconsistency scenarios
caused by transport and client failures are orthogonal issues,
and we do not include them in the scope of this paper.
SDQS can be easily extended with approaches addressing
these issues, such as the HTTPR protocol [16], which is
a reliable variance of HTTP.
In summary, we design SDQS to achieve strong queuing

consistency within the server boundary. The following
consistency objectives are achieved: 1) Without HTTP
transport or client failures, SDQS ensures that all message
will be delivered exactly once, and the in-order option
also delivers messages in FIFO order; and 2) when
HTTP transport or client failures occur, SDQS ensures
all messages sent to the system will be delivered (no message
loss).

System architecture
As mentioned in the introduction, we designed SDQS based
on IBM WebSphere eXtreme Scale, which is a distributed
in-memory object caching system. IBM WebSphere eXtreme
Scale uses standard commodity server hardware and
networking protocol. Similar with many other distributed
data storage systems, it provides high availability by
replicating data across multiple servers. Moreover, it differs
from most of its peer systems by providing transactional
consistency to stored data. In addition to the high availability
and consistency from the storage perspective provided
by WebSphere eXtreme Scale, SDQS also uses a
visibility-timeout approach and a queue indexing method
to offer queuing consistency. These terms were discussed in
the BBackground and related work[section.
The system architecture of SDQS is shown in Figure 2.

Components are organized in multiple layers in this
architecture. The lowest layer is a reliable persistent storage
system, which can be based on either a database or an
enterprise queuing system. This layer is needed in two
infrequent cases: when maintenance or disaster recovery
is needed in SDQS or when a huge amount of data
needs to be made persistent for a long time. On top of this
layer is the in-memory distributed storage layer, which is
provided by WebSphere eXtreme Scale. All transactions
of queue operations occur in this layer, and data is written to
the reliable persistent storage in an asynchronous manner.
Based on WebSphere eXtreme Scale, the SDQS Server
layer implements a set of queue operation interfaces.
These interfaces are independent from the implementation
of the SDQS server and the distributed persistence layer;
thus, in the future, different SDQS server implementation
can be coupled with different distributed persistence
storage to offer more consistency options to users. To
maximize overall system throughput, the SDQS Server is
designed to store all states in the distributed storage layer

Z. ZHANG ET AL. 10 : 5IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

and maintains no state itself; therefore, multiple instances can
be deployed to support concurrent client access. The Queue
Operation Management component accesses WebSphere
eXtreme Scale via its local ObjectMap API. In the top layer,
a RequestDispatcher is responsible for routing incoming
client requests to an SDQS server instance. This can be
achieved using either a dedicated front-end HTTP router or
round-robin domain name system.

Queue operation API
The core queue operation API deals with message access
operations, and its design goals are to provide exactly once
delivery over potentially unreliable HTTP and to support
no-order or in-order delivery options. The following APIs are
provided to clients:

• SendMessageVThis operation places a message on a
given queue. The call returns only when the message is
persisted in the system.

• ReceiveMessageVThere are two kinds of semantic
interpretations for this operation: if the client adopts the
exactly once and no-order consistency option for the
queue, this operation tries to randomly retrieve any
message available in the queue; if the client adopts the
exactly once and in-order consistency option for the
queue, this operation tries to retrieve the oldest message
in the queue. We use the same visibility-timeout protocol
for receiving messages as in Amazon SQS. Each
ReceiveMessage request starts a timer, and the message
is locked before the timer expires or the message is
deleted.

• DeleteMessageVAs mentioned above, DeleteMessage
is always called with ReceiveMessage in pairs to confirm
the successful processing of a message by the receiver
application.

These message-operation APIs are similar to SQS;
readers are encouraged to refer to [2] for more details.
To support multitenancy as a cloud-based service, SDQS
uses the concept of accounts. The main operations are
CreateAccount, ListAccounts, and DeleteAccount. Within
an account, a client can manipulate queues using the
following operations:

• CreateQueueVA new queue is generated with a unique
queue ID. The user can specify the consistency level
desired to use in the queue.

• ListQueuesVThis lists all the queues that belong to an
account.

• DeleteQueueVThis deletes a queue and all the messages
in the queue.

IBM WebSphere eXtreme Scale data model
IBM WebSphere eXtreme Scale stores data in maps; a map
is an interface that stores data as key-value pairs. There
are no duplicate keys in a map. A key is a Java object
instance that identifies a single value. A value is a Java object
instance that contains the data.
There are three main resource types in SDQSVaccount,

queue, and message. They are stored as entries in WebSphere
eXtreme Scale maps, i.e., each uniquely identified by a
key, which takes the form of XYZ-ID, where XYZ is a
three-character prefix and ID is created by hashing a human
readable unique name. This design distributes data across
the entire WebSphere eXtreme Scale cluster and allows direct
access to any objects without having to search through
multiple levels of indirection.
In WebSphere eXtreme Scale, maps are grouped into map

sets [17]. When a map set is deployed to a WebSphere
eXtreme Scale cluster, configurable parameters can be
specified on the map set depending on the workload and data
access pattern; thus, the performance of the map set can
be tuned. To this end, the maps in SDQS are grouped into

Figure 2

System architecture of SDQS. (WXS: IBMWebSphere eXtreme Scale.)

10 : 6 Z. ZHANG ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

three types of map sets. The first is the account and queue
map set that stores the account and queue metadata. This map
set contains the least amount of data among the three.
The second is the message map set, which stores the message
payloads. The remaining map sets are index map sets,
which store IDs and visibility values for messages in FIFO
order for in-order queues.

Accounts map
The prefix of the account key is ACT, and the ID is the hash
of the account name, which is unique across the system.
In the value, a Java HashMap is used to store two categories
of data, i.e., Metadata and Queues. The Metadata contains
account information such as owner’s name, console login
password, and secret key. The list of Queues contains
reference indices to the queues in the account, i.e., in the
form of (QueueName, QueueKey).

Queues map
The prefix of queue key is QUE, and ID is the hash of the
fully qualified unique queue name. In the value, a Java
HashMap is used to store two categories of data, Metadata
and Permissions. Metadata stores information such as default
visibility timeout and the consistency option. Permissions
stores access control related information, which is not
discussed in this paper.

Messages map
These maps are dynamic maps; they are created and
destroyed during the run-time, with each corresponding
to a queue. The prefix of the map name is the queue ID.
The prefix of the map key is MSG, and the ID is the hash
of a globally unique ID. The value stored is the message
content.

TimeOut map
This map is used to implement the timeout mechanism for
the queues. The map key is the same as the key of Messages
Map, which identifies the unique ID of a message. In the
value, a Java HashMap is used to store two categories of
data, i.e., queue ID and message content.

Queue index map
These dynamic maps are used to maintain the order of
the messages, which belong to queues with the in-order
consistency option. Each map corresponds to a queue, and
the prefix of the map name is the queue ID. The map key
is the same as the key of Messages Map, which identifies
the unique ID of a message. The value stored is a Boolean
value that indicates whether the message is visible.

Queue operation algorithm for no-order queues
Given the WebSphere eXtreme Scale data model described
above, SDQS realizes the queue operations by manipulating

the stored data. The high-level algorithms of the two main
message operations (send and receive) for no-order queues
are described below.

Send message to a no-order queue
Upon receiving the SendMessage request, the system
uses the specified account name and the queue name to
compute the queue ID. It checks if the sender has the
permission to perform the operation. The Messages Map
corresponding to the queue is located using the queue ID.
A unique message ID is then generated. The message
content is inserted into the Messages Map using the message
ID as the key.

Receive message from a no-order queue
Similar to the SendMessage operation, upon receiving the
ReceiveMessage request, the system computes the queue ID,
checks if the receiver has the permission to perform the
operation, and locates the Messages Map. The system
retrieves and removes one entry from the Messages Map,
whose content will then be returned to the receiver. A timer
for this message is started on the server handling the request,
and the message itself is inserted into the Timeout Map.
Similar to queue and message maps, the Timeout Map is
replicated in WebSphere eXtreme Scale to protect against
server failures.
If the receiver issues the DeleteMessage request within

the visibility-timeout window, the message is located
and removed from Timeout Map. The timer is also cancelled.
If the timer triggers, the corresponding message is
removed from the Timeout Map and reinserted into the
Messages Map.

Queue operation algorithm for in-order queues
To preserve order for in-order queues, an order index is built.
This index stores message IDs in the order that they are
received and also keeps a visibility value for each message.
It is stored in an index map, and these maps are grouped
into several map sets. When these map sets are deployed,
the number of the partitions is set to one. When a message
is sent to the queue, the ID of the message is also stored
in the index map. When a receive request arrives, SDQS first
retrieves an entry from the index map. This should be the
message ID of the oldest message of the queue because when
the entry is retrieved from the index map, a FIFO ObjectMap
API of WebSphere eXtreme Scale is used. The FIFO API
supports the FIFO sequence of the map, which is stored in a
single partition. Although each index map is stored on a
single partition, SDQS still largely retains the benefits of
multipartitioning because the workload of storing and
processing the actual messages in each queue is still
distributed among multiple servers. The following two
subsections review the algorithms of send and receive
operations for in-order queues.

Z. ZHANG ET AL. 10 : 7IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

Send message to an in-order queue
Upon receiving the SendMessage request, the system uses
the specified account name and the queue name to compute
the queue ID. It checks if the sender has the permission
to perform the operation. The Messages Map and the Queue
Index Map corresponding to the queue are located using
the queue ID. A unique message ID is then generated.
The message content is inserted into the Messages Map
using the message ID as the key. The message ID is also
inserted into the Queue Index Map for the queue, with the
value set to Bvisible,[indicating that the message is ready
for retrieval.

Receive message from an in-order queue
Similar to the SendMessage operation, upon receiving the
ReceiveMessage request, the system computes the queue ID,
checks if the receiver has the permission to perform the
operation, and locates the Messages Map and the Queue
Index Map. A FIFO ObjectMap API is used to retrieve the
first (oldest) message ID from the Queue Index Map that is
marked Bvisible.[The visibility is changed to Binvisible.[
Using the message ID, the system retrieves the corresponding
message content from the Messages Map, which will then
be returned to the receiver.
A timer for this message is started. If the receiver issues

the DeleteMessage request within the visibility-timeout
window, the message is removed from Messages Map,
and the message ID is removed from the Queue Index Map.
The timer is also cancelled. If the timer triggers, the
visibility for the corresponding message ID in the
Queue Index Map is changed back to Bvisible.[

Implementation and evaluation
We have implemented a prototype of SDQS and deployed
it on an internal (company) research compute cloud platform.
We have also performed preliminary experiments using a
synthetic workload generated by simulation drivers to
benchmark the system queuing consistency, availability,
and performance. For future work, we would like to collect
workloads from real-world usage scenarios and perform
more comprehensive evaluations.
The implementation of SDQS uses IBM WebSphere

eXtreme Scale version 7.0.0.3, a highly scalable
fault-tolerant data grid with substantial horizontal scaling
capability. In other words, WebSphere eXtreme Scale
is designed to scale out to thousands of server instances
by splitting large amounts of data into manageable chunks
and distributing them across the grid. Each of the server
instances hosts grid data in a grid container. Communication
between WebSphere eXtreme Scale grid containers is
designed to occur only for availability management and data
replication purposes. WebSphere eXtreme Scale has been
proven to run smoothly with more than 1,500 Java VMs
with a 2-GB heap participating in a data grid managing

almost 2 TB of data. WebSphere eXtreme Scale provides
strong storage consistency via its built-in transaction support
for all changes made to the cached data.
In the experiment deployment, we run WebSphere

eXtreme Scale grid container servers and catalog servers as
daemon processes using a 32-bit Java Development Kit 1.6
with a 1.5-GB maximum heap size. The queue operations
component is implemented in about 7,200 lines of Java code.
It provides a Java interface to account-, queue-, and
message-related operations. The HTTP REST interface along
with an administrative console is implemented with about
1,000 lines of code consisting of PHP, a web scripting
language, and HyperText Markup Language (HTML), as
well as 3,000 lines of Java servlet handlers. These two
components are hosted on WebSphere sMash [18], a
lightweight Web application container. A simple client-side
Java wrapper of the HTTP REST interface is also
implemented. It is used by the test drivers to access the
queuing service.

Evaluation methodology and metrics
A cluster of N VMs is used to host the SDQS. Each VM
has two processor cores, 2 GB of RAM, and 36 GB of
disk space and is connected to a Gigabit Ethernet network.
The number of synchronous replicas of the message map set
is set to two, which is typically used in a multidata-center
deployment to provide high availability. The test workload
is generated by a sender program and a receiver program.
The sender program simulates Q sending applications, each
of which sends messages to a separate queue using Tsend
threads. Each sending thread sends m messages to the
queue with �send seconds delay between successive
send operations. For each sender program, there is a
corresponding receiver program, which simulates Q
receiving applications, i.e., each of which receives messages
from the corresponding queue that the sending application
uses. Each receiving application uses Trecv threads to receive
and process the messages. Each receiving thread reads a
message from the queue, processes the message in �recv
seconds, deletes the message, and repeats the process. The
total number of messages sent and received during a test run
is M ¼ Q � Tsend � m. A separate cluster of VMs (with the
same configuration as above) is used to host the senders
and receivers. The senders and receivers are configured
to use the HTTP REST interface to access the queuing
service. Unless otherwise stated, all experiments are repeated
seven times, and we report the average result for each
data point.
To better characterize the sending and receiving behavior

of the system, the sending and receiving operations are
executed during two different phases. First, all senders
are launched simultaneously. After they have finished
sending the specified messages, all receivers are launched
simultaneously. Each experiment is repeated three times

10 : 8 Z. ZHANG ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

and the average values of the following performance metrics
are collected. Send rate is the number of SendMessage
operations that the system services in one second. Receive
rate is the number of combined ReceiveMessage and
DeleteMessage operation cycles that the system services in
one second. Four consistency metrics are also measured:
duplication rate, loss rate, and two metrics of message order,
to be explained in the next paragraph. During each test
run, duplicate messages are detected. If the number of
duplicates is Mdup, the duplication rate is � ¼ Mdup=M . Each
message contains a payload of L random bytes with a
checksum. The receiver verifies the checksum to determine if
a message is corrupted in transit. A message is considered
lost if its payload is corrupted or if it is not received at all.
The loss rate is " ¼ Mloss=M .
For each sender–receiver pair of a queue, there exists a

deterministic correct order of message delivery sequence.
To quantify the degree of out-of-order, we define two
metrics for each sender–receiver pair. The first metric,
i.e., out-of-order rate, is defined as the ratio of the minimum
number of messages that have to be reordered to the total
number of messages in the sequence. The second metric,
i.e., average displacement, is defined as the average
difference of message positions in the received sequence
versus those in the correct sequence. Note that the degree
of out-of-order for multiple senders and receivers depends
on the processing rates of different clients and cannot be
clearly defined in the practical use cases that we have
observed.
For example, consider a sequence of message {m1,

m2, m3, m4, m5}. If the received order is {m2, m1,
m3, m4, m5}, the out-of-order rate is 20% since only m1
needs to be reordered, and the average displacement is
ð1þ 1þ 0þ 0þ 0Þ=5 ¼ 0:4. If the received order is {m2,
m3, m4, m5, m1}, the out-of-order rate is still 20%, but
the average displacement is ð1þ 1þ 1þ 1þ 4Þ=5 ¼ 1:6.
We can see that out-of-order rate measures the absolute
number of out-of-order messages, whereas average
displacement reflects the average reordering delay at the
receiving end if order is desired. Together, these two metrics
provide a comprehensive representation of the message
order. Because the duplication metric is defined and
measured separately, duplicates are excluded from these
two metrics. This is slightly different from the method
used in [19], which combines the orderness measure with
duplicate measure.
To compare the queuing consistency of SDQS to that

of a typical cloud queuing service with reduced consistency,
we have also executed the same test workload using Amazon
SQS. Since our goal is to improve the queuing consistency
of a cloud-based queuing service so that it approaches that
of traditional enterprise queuing products, we have also
implemented a bridge that links an Apache ActiveMQ queue
manager to the aforementioned HTTP REST interface. A

logical queue is partitioned into K segments and stored on
K different queue managers. Upon receiving a request for
Send or Receive, a dispatcher routes the request to one of
the K hosting queue managers to be executed. All messages
in queues are made persistent on the hard disk.

Queuing consistency under normal conditions
A series of experiments was performed to evaluate the
consistency of different queuing systems and policies,
including SQS, which provides at-least-once delivery with
no order guarantee; ActiveMQ with different numbers of
queue partitions ðK ¼ 1; 3; 50Þ; and SDQS with no-order and
in-order consistency options. In this set of experiments,
we use 50 server VMs and 10 sending/receiving VMs to
host and operate on 50 queues, and 100 messages are sent to
each queue ðN ¼ 50;Q ¼ 50;m ¼ 100Þ. We consider four
different metrics as introduced above: message loss rate ",
message duplication rate �, out-of-order rate, and average
displacement. In this set of experiments, we consider a
normal operating condition, where no failure occurs to the
servers or clients.
Figure 3 illustrates the results with different numbers

of receiving threads per queue ðTrecv ¼ 1; 2; 3Þ. It can be
seen that all systems and policies can deliver messages
without losses under the presumed normal condition. Both
ActiveMQ and SDQS also deliver each message exactly once
(no duplication). With SQS, the message duplication rate
increases rapidly with the number of receiving threads
because, without a distributed locking mechanism, multiple
receiving threads can retrieve different copies of the same
message from different replicas.
If queues are not partitioned in ActiveMQ ðK ¼ 1Þ,

all ReceiveMessage operations for a queue will be routed
to the server hosting the queue, and for each such operation,
the oldest message will be returned and no out-of-order
delivery will occur. With the in-order consistency option,
SDQS also produces no out-of-order message delivery
despite the partitioning of message queues. This is achieved
via distributed locking inside the WebSphere eXtreme
Scale client library and the message queue index mechanism
introduced in the system design section. SDQS with the
no-order option and ActiveMQ with K ¼ 50 has very high
out-of-order rates and average displacement values because,
for each ReceiveMessage operation, a random server is
selected from the N servers hosting the queue, and the oldest
message on the selected server is returned. When K ¼ 3
is used in ActiveMQ, the out-of-order rate and average
displacement are much lower. Intuitively, there is a one-third
probability that the oldest message on the selected server
is the oldest message in the queue.
It can also be observed that the out-of-order rate

and average displacement decrease with Trecv because
out-of-order metrics are calculated within each single
receiving thread. An out-of-order delivery occurs when

Z. ZHANG ET AL. 10 : 9IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

two ReceiveMessage operations from receiving thread R
are routed to two different servers (server1 and server2),
and the oldest message in server2 is older than the oldest
message in server1. With more peer receiving threads,
between the time that R visits server1 and server2, some
oldest messages are retrieved from server2, and the
probability of the above out-of-order scenario is lower.
The out-of-order rate and average displacement of SQS

largely depends on the sampling mechanism to serve
ReceiveMessage or, more specifically, the proportion of
sampled servers to the entire set of servers hosting the queue.

Tradeoff between performance and consistency
We also investigate the tradeoff between queuing
consistency and system performance. We vary the cluster
size N from 10 to 70. To emulate a realistic deployment

scenario, we let the workload (number of queues)
grow proportionally with the cluster size ðQ ¼ NÞ. We
fix the number of sending and receiving threads to be
Tsend ¼ Trecv ¼ 3.
The top two charts in Figure 4 illustrate the rates of

SendMessage and ReceiveMessage þ DeleteMessage
operations. It can be seen that both in-order and no-order
consistency options scale approximately linearly with
the cluster size. Overall, the no-order option has higher
performance than the in-order option. As discussed in the
system design and architecture section, additional operations
need to be performed to deliver messages in FIFO order.
The bottom two charts in Figure 4 show the average

response time for SendMessage and ReceiveMessage
requests. In general, the response time does not change
much with different cluster sizes because the workload

Figure 3

Comparison of queuing consistency (message loss rate, message duplication rate, message out-of-order rate, and average displacement) under normal
operating conditions among Amazon SQS, ActiveMQ, and the proposed SDQS with either in-order and no-order options.

10 : 10 Z. ZHANG ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

increases proportionally with the cluster size. Therefore,
the number of requests routed to each server remains about
the same level. The in-order option incurs higher latency
than no-order, i.e., for the same reason outlined above.

Conclusion
Message queues provide reliable asynchronous
communication channels among software components
and are widely used as a form of connectivity to support
large-scale, distributed, and fault-tolerant applications.
As cloud computing reaches wider adoption, MQ plays
an increasingly important role as a common could-based
service. This paper has presented the design and
implementation of SDQS, which is a cloud-based queuing
service. SDQS provides a better queuing consistency model
than current state-of-the-art cloud-based queuing services

in that it offers exactly once delivery with the option of
FIFO order while being highly available.
Preliminary evaluation has been performed on a large

cloud computing test bed. The evaluation showed that
SDQS provides significantly enhanced queuing consistency.
While SDQS delivers messages exactly once with no
duplication under all conditions, it offers clients an option
to trade performance for improved delivery order. We
believe that this is a significant improvement over existing
cloud-based queuing services.

Acknowledgments
The authors would like to thank our colleagues
Ramesh Gopinath, Mark Phillips, Jun Rao, Marc-Thomas
Schmidt, Sandeep Tata, Graham Wallis, Fan Ye, and
Liangzhao Zeng for their support and help.

Figure 4

Comparison of system throughput between no-order SDQS queues and in-order SDQS queues. The result shows that both options achieve good
scalability. FIFO delivery order can be provided at the cost of reduced overall system performance.

Z. ZHANG ET AL. 10 : 11IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the U.S., other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Microsoft Corporation, or Apache Software Foundation
in the U.S., other countries, or both.

References
1. J. Dean and S. Ghemawat, BMapreduce: Simplified data processing

on large clusters,[Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

2. Amazon, Amazon Simple Queue Service. [Online]. Available:
http://docs.amazonwebservices.com/AWSSimpleQueueService/
latest/SQSDeveloperGuide/

3. Microsoft Corporation, Windows Azure Platform. [Online].
Available: http://www.microsoft.com/windowsazure/

4. IBM Corporation, Users Guide to WebSphere eXtreme Scale.
[Online]. Available: http://www.redbooks.ibm.com/redbooks/pdfs/
sg247683.pdf

5. IBM Corporation, WebSphere MQ V6 Fundamentals. IBM
International Technical Support Organization, 2005. [Online].
Available: http://www.redbooks.ibm.com/abstracts/sg247128.html

6. Y. Kahlidi, BBuilding a computing platform for new possibilities,[
IEEE Comput., vol. 44, no. 3, pp. 29–34, Mar. 2011.

7. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, BChord: A scalable peer-to-peer lookup
service for internet applications,[in Proc. SIGCOMM,
San Diego, CA, Aug. 27–31, 2001, pp. 149–160.

8. A. I. T. Rowstron and P. Druschel, BPastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems,[
in Proc. 18th IFIP/ACM Int. Conf. Distrib. Syst. Platforms
(Middleware), Heidelberg, Germany, Nov. 2001.

9. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
BA scalable content addressable network,[in Proc. SIGCOMM,
San Diego, CA, Aug. 27–31, 2001, pp. 161–172.

10. Memcached. [Online]. Available: http://memcached.org/
11. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, BBigtable:
A distributed storage system for structured data,[ACM Trans.
Comput. Syst., vol. 26, no. 2, pp. 1–26, 2008.

12. Apache Software Foundation, HBase. [Online]. Available:
http://hbase.apache.org/

13. G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, BDynamo: Amazon’s highly available key-value
store,[in Proc. SOSP, 2007, pp. 205–220.

14. A. Lakshman and P. Malik, BCassandra: A decentralized
structured storage system,[SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, pp. 35–40, Apr. 2010.

15. D. Pritchett, BBase: An acid alternative,[ACM Queue, vol. 6, no. 3,
pp. 48–55, 2008.

16. S. Todd, F. Parr, and M. Conner, A Primer for HTTPRVAn
Overview of the Reliable HTTP Protocol. [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-phtt/

17. IBM Corporation, WebSphere eXtreme Scale Administration
Guide. [Online]. Available: ftp://public.dhe.ibm.com/software/
webserver/appserv/library/v70/xSadminguide_PDF.pdf

18. IBM Corporation, Project Zero. [Online]. Available: http://www.
projectzero.org/

19. T. Banka, A. A. Bare, and A. P. Jayasumana, BMetrics for degree
of reordering in packet sequences,[in Proc. Annu. IEEE Conf.
Local Comput. Netw., 2002, pp. 333–342.

Received February 11, 2011; accepted for publication
March 18, 2011

Zhe Zhang IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (zhezhang@us.ibm.com).
Dr. Zhang received his B.E. degree in computer science in 2003 from
the University of Science and Technology of China. He received his
M.S. degree in operations research, and Ph.D. degree co-majoring in
operations research and computer science from North Carolina State
University, in 2006 and 2009. He worked on parallel file system
techniques for the Jaguar supercomputer at the Oak Ridge National
Laboratory from 2009 to 2010. Since joining IBM in 2010, he has been
involved in cloud-based messaging systems.

Yuan Wang IBM Research Division, China Research Lab,
Zhongguancun Software Park, Haidian District Beijing, P.R.C. 100193.
Dr. Wang is an IBM Research Staff Member involved in research and
development work for extensible application framework. His research
interests include cloud computing, service composition, and M2M
infrastructure. He received his Ph.D. degree in control theory and
engineering from Tsinghua University, Beijing, China, in 2006.

Han Chen IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (chenhan@us.ibm.com).
Dr. Chen is an IBM Research Staff Member involved in research and
development work in the areas of distributed computing. His research
interests include messaging and event systems, cloud computing,
service-oriented computing, and multimedia systems. He received a
B.S. degree in computer science from Tsinghua University, Beijing,
China, in 1997. He also holds Ph.D. (2003) and M.A. degrees (1999)
in computer science from Princeton University.

Minkyong Kim IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (minkyong@us.
ibm.com). Dr. Kim is working in the area of messaging systems
and cloud computing. Her research interests include distributed
systems, mobile computing, and pervasive computing. She received
her B.S. (1996) and M.S. (1998) degrees in computer engineering
from Seoul National University. She received her Ph.D. degree in
computer science and engineering from the University of Michigan,
in 2004.

Jing Min Xu IBM Research Division, China Research Lab,
Zhongguancun Software Park, Haidian District Beijing, P.R.C. 100193.
(xujingm@cn.ibm.com). Mr. Xu is a Research Staff Member and the
manager of the Service Composition Research department. He joined
IBM after receiving his M.S. degree from Xi’an Jiaotong University
in 1998. He currently works in the area of service composition for
business service cloud. He holds five Granted patents and has published
more than ten papers in various journals and conferences.

Hui Lei IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (hlei@us.ibm.com).
Dr. Lei is a Research Staff Member at the IBM T. J. Watson
Research Center, where he manages the Messaging and Event Systems
department. His research interests include distributed systems,
cloud computing, and mobile and pervasive computing, as well as
service-oriented and event-driven architectures. He was a recipient
of an IBM Outstanding Technical Achievement Award and more
than ten IBM Invention Achievement Awards. He received his
Ph.D. degree in computer science from Columbia University. Dr. Lei is
a Senior Member of the Institute of Electrical and Electronics
Engineers, and holds a Visiting Professor appointment at
Sun Yat-sen University.

10 : 12 Z. ZHANG ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 10 NOVEMBER/DECEMBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

