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Abstract— Queuing, an asynchronous messaging pattern, is
used to connect loosely coupled components to form large-
scale, highly-distributed, and fault-tolerant applications. As cloud
computing continues to gain traction, queuing starts to emerge
as a cloud-hosted, multi-tenant service with the goals of ease
of consumption and lowered cost of ownership. A number
of vendors currently operate shared queuing services. They
provide high availability and network partition tolerance with
reduced consistency. Although they offer at-least once delivery
guarantee, that is, no message is lost, they do not make any
effort in maintaining FIFO order in message delivery, which is
an important aspect of the queuing semantics. Thus they are not
adequate for many applications. This paper presents the design
and implementation of a scalable cloud-based queuing service,
called BlueDove Queuing Service (BDQS). It provides improved
queuing consistency—at-least once and almost-in-order message
delivery— while preserving high availability and partition toler-
ance. It also offers clients a flexible trade-off between duplication
and message order. Comprehensive evaluation is carried out on
an Infrastructure-as-a-Service cloud computing platform with up
to 70 server nodes and 1000 queues. It shows that BDQS achieves
linear performance scalability. Meanwhile, it offers an order-of-
magnitude improvement in out-of-order measurement compared
to existing no-order systems. Results also indicate that BDQS is
highly reliable and available.

I. INTRODUCTION

An important tool in reining in the growing size and
complexity of software systems is modularization and loose-
coupling. Instead of a large monolithic codebase, modern
large software systems are often implemented as distributed
components that are connected via reliable communication
channels using asynchronous message passing. Queuing is one
of the most commonly used asynchronous messaging patterns
in building these large-scale, highly distributed, and fault-
tolerant applications.

There are a number of ways queuing is used in such applica-
tions. Message queues may be used directly to provide point-
to-point communication between two components with a uni-
cast semantics. Alternatively, queues can use used to connect a
number of providers and consumers with an anycast semantics.
In both cases, the communication is asynchronous, allowing
loosely coupled components to fail independently. The overall
system can continue to function even in the face of component
failure, thus providing improved reliability. Commonly used
application patterns include workload dispatching/load balanc-
ing, MapReduce [7]-like pipelined processing, and information
aggregation and dissemination. When synchronous request-

response communication pattern is required, as often is the
case in enterprise application integration, message queues may
be used as a reliable transport for higher-level application
protocols. For example, SOAP (Simple Object Access Pro-
tocol) over JMS (Java Message Service) is widely used to
support reliable Web Services invocation. Finally, queues are
also frequently used as a delivery mechanism for another
asynchronous messaging pattern, publish/subscribe, where a
broker uses queues to buffer notification events that need to be
delivered to subscribers that may be disconnected temporarily.

In order to reduce capital and operational expenses, the IT
industry is gradually adopting the cloud computing model.
Several service providers now operate public queuing services
that can be consumed by multiple users in the cloud, for exam-
ple, Amazon Simple Queue Service (SQS) [1] and Microsoft
Windows Azure Queue [3]. These services choose to sacri-
fice consistency in favor of service availability and network
partition tolerance. For queuing, reduced consistency means
violation of strict queue semantics—possible message loss,
duplication, and out-of-order delivery. Existing services adopt
a consistency model of at-least once delivery (guaranteed no
loss) with no order (random sampling of available messages).
This suffices for a number of applications. However, some ap-
plications, although tolerant of out-of-order delivery, still pre-
fer in-order delivery so as to provide better service quality at
application level. For example, in an e-commerce application,
the shopping component sends verified orders to the warehouse
for packing and shipping. Even though strict message order
is not required, it would be desirable to serve earlier orders
first so as to improve customer satisfaction. Therefore it is
important to improve the queuing consistency while preserving
the service’s availability and partition tolerance.

This paper presents BlueDove' Queuing Service (BDQS),
a cloud-based queuing service that is highly scalable, highly
available, and offers improved queuing consistency. The sys-
tem is built on top of Cassandra [11], a distributed storage
system. BDQS guarantees at-least once delivery and offers
almost-in-order message order. A customizable parameter fur-
ther allows users to specify the desired trade-off between mes-
sage order and duplication. Evaluations on a cloud computing
platform with up to 70 server nodes and 1000 client queues

BlueDove is a cloud-based messaging service that supports both queuing
and publish/subscribe. This paper describes only the queuing related portion.



show that the service is highly scalable and available, and
provides an order-of-magnitude improvement in out-of-order
measure compared to existing services.

The main contributions of this paper are

« It proposes a cloud-based service that provides stronger
queuing consistency, while preserving the same high
availability and partition tolerance features available from
other competing services;

« It introduces a number of novel techniques to optimize
the performance and scalability of a cloud-based queu-
ing service. Among these techniques are queue-specific
control of desirable consistency and a scalable design of
client protocol for end-to-end application-level reliability;

o It demonstrates an order of magnitude improvement
in out-of-order measure and linear performance scaling
through comprehensive experiments with up to 70 servers
and 1000 queues.

The rest of the paper is organized as follows. Section III
describes the system design and architecture. Section IV
describes a prototype implementation of BDQS and Section V
presents a comprehensive evaluation of its performance, reli-
ability, and availability. Section VI concludes the paper and
discusses relevant future work.

II. RELATED WORK

There is a large body of work on distributed storage
mechanism. Distributed hash tables, such as CHORD [16],
Pastry [14], CAN [13], use structured overlay and multi-
hop routing to implement key-value stores (hashtables) over a
large number of nodes. Bigtable [6] provides additional data
modeling capability and has proven to be extremely useful in
a number of large-scale cloud-based services.

These systems focus on the scalability and performance
aspects of distributed storage and offer a consistent view
of stored data to clients. What has been popularly known
as the CAP theorem [5], [10] states that, in a distributed
system, only two out of the following three desired properties
can be provided at the same time: consistency, availability,
and partition tolerance. Because high availability and network
partition tolerance are important in providing services in a
cloud environment to a large number of users, this has led
to the Basically Available, Soft state, and Eventual consis-
tency (BASE) model [5], [12] as opposed to the traditional
ACID model that is widely employed by relational databases.
Dynamo [8] is a distributed key-value store that adopts the
eventual consistency model [18]. Cassandra [11] improves
on Dynamo by incorporating data models from Bigtable and
provides an eventually consistent, distributed storage system.

A queue is an ordered storage that restricts puts to the tail
and gets to the head. A number of providers offer cloud-based
queue services, such as Amazon Simple Queue Service [1] and
Microsoft Windows Azure Queue [3]. Reduced consistency
in queue means possible duplication, loss, and out-of-order
delivery. Both services offer at-least once delivery guarantee,
that is, no loss but possible duplications. They use random
sampling to retrieve messages from a queue, and therefore do

not provide any order guarantee. Strauss [17] has presented
his experience of using Cassandra in different ways to provide
queue-like connectivity between components in applications.
These are examples of using Cassandra but do not represent
a general purpose shared queuing service and no systematic
evaluation on performance or consistency is available.

III. SYSTEM DESIGN AND ARCHITECTURE

In this section, we first describe the common design ele-
ments of existing cloud-based queuing systems, and analyze
their characteristics and limits on consistency. Then we explain
how we use three key techniques to realize improved consis-
tency while preserving high availability and fault tolerance.

A. Common Design Elements of Existing Systems

Amazon SQS and Microsoft Windows Azure Queue are
two most well known and widely used cloud-based queuing
systems currently on the market. They share some elements
which are common to the design of cloud-based queuing
systems. In designing BDQS, we adopt similar design features,
while focusing on addressing their limits on consistency.

1) Distributed Replicated Storage: Queue being a special
type of data structure, it is logical and desirable to take
advantage of a distributed storage system and implement queue
operations on top of it. To this end, existing queue systems
rely on a cluster of commodity storage nodes for persisting
messages. To provide high availability and disaster recovery
capability, messages are usually replicated multiple times.
The replication factor (R) is determined by the service level
that a service is offering—two is minimum to offer simple
redundancy and server failure protection, while three may be
needed to protect data against catastrophic site failure.

When a client sends a message to a queue in such a
system, the front-end receives the request and selects R storage
nodes from the available storage pools. The message is then
replicated R times and stored on each of the R selected storage
nodes. When a client tries to retrieve a message from a queue,
the front-end randomly samples a number of available storage
nodes and collects the oldest messages from these sampled
nodes and return them to the client.

2) Visibility Timeout Based HTTP Protocol: Both SQS and
Azure Queue adopt an HTTP based client APIL, so that a
wide variety of applications and clients can access the queuing
service. To simplify the programming model, a REST (Rep-
resentational State Transfer) [9] style session-less protocol is
used. The benefit is that any application with HTTP client
capability can use the service without a heavy library. The
implication, however, is that additional mechanism must be
put into place to ensure application level reliability against
network connection reset or client crash. Note that the mere
delivery of message to a receiver is not sufficient: the receiver
may crash before finishing processing the message. In order
to ensure end-to-end reliability, the service has to hold the

2In a strict sense, their protocols are not REST as they neither map resources
to URIs nor use HTTP verbs for actions.



message and delete it only after a receiver has successfully
finished the processing.

To this end, the protocol is designed to work in the following
way. A client invokes SendMessage to put a message on a
given queue. When it returns the message is guaranteed to be
persisted. If either network or client failure occurs, the client
will retry after recovery, which may result in duplication but
never loss. A client uses ReceiveMessage to retrieve the
oldest messages in the queue. Upon servicing such a request,
the queuing service returns the oldest messages to the client
but does not immediately delete them. They are made invisible
to subsequent ReceiveMessage calls during a time window
known as visibility timeout. After successfully processing
the messages, a client needs to issue a DeleteMessage
request before the timeout happens to permanently delete the
messages. If timeout happens before DeleteMessage, the
messages reappear in the queue and will be available for
retrieval again. This visibility timeout mechanism in a way
provides a lightweight transaction over HTTP with automatic
rollback specified by the timeout value.

We can see that this protocol prevents messages from being
lost in the face of either network or client failure, but it may
result in duplicate messages under these failure conditions.

3) Characteristics of Existing Designs: The replication
gives existing system high availability because queued mes-
sages can survive up to R — 1 storage node failures. Also, the
random sampling strategy leads to higher throughput, because
the system can serve parallel client requests of a queue on any
of the R replicas.

However, their design also imposes limits on the level of
consistency. Because of the use of random sampling, clients
will receive messages in a different order than they were sent.
Further, an attempt to retrieve messages may return nothing
if it is served by an “empty” node, even though there are
messages on other nodes. Also, duplication can also occur
during server failure or under concurrent client access.

B. BlueDove System Design

The main design goals for BDQS are: 1) it shall offer at-
least-once delivery guarantee (no message loss) as in existing
systems, but provide much better message ordering (almost-
in-order, but no guarantee); 2) it shall be highly available; 3)
it shall have high performance and be highly scalable.

Like existing systems, BDQS uses distributed, replicated
storage and adopts the visibility timeout protocol. But we in-
troduce three key techniques that improve queuing consistency
without sacrificing high availability and partition tolerance.

1) Queue Index for Best-effort In-order: As discussed
earlier, existing design is inherently incapable of preserving
message order, because messages are scattered throughout
the system and retrieved using random sampling. In order
to preserve message order, we need to introduce a data
structure that maintains the order of messages. Instead of
putting the actual messages in such a data structure, which
limits the system’s scalability, we build a message index for
each queue—essentially a list of message IDs ordered by the

messages’ arrival times at the front-end nodes. The actual
messages are still distributed among the storage nodes. To
prevent the indexes from becoming a single point of failure,
they are also replicated R times in the storage system.

With the addition of the message index, the queuing op-
erations are modified as follows. During SendMessage,
the message ID is appended to the message index of
queue and the message itself is stored separately. During
ReceiveMessage, the message index object is first con-
sulted to determine the ID of the oldest message, which is
then used to retrieve the actual message. Because the message
IDs are sorted by the time they enter the system, concurrent
insertions on different replicas of the index still result in the
same ordering even without synchronized clocks. More details
will be explained in the technique for visibility timeout.

2) Hinted Tradeoff between Order and Duplication: One
of the overall design goals is to maintain high performance.
Therefore, we use multiple independent system front-ends to
serve client requests concurrently. In order to maximize system
throughput and increase reliability, no distributed locks are
used among these component instances. The result is that,
when multiple clients invoke ReceiveMessage operation
on the same queue index object using different entry points
into the system, the same message may be returned to these
clients. From a correctness point of view, this does not violate
the at-least once delivery model. However, it may be desirable
to reduce the number of duplicate messages.

We have designed a collision avoidance algorithm to balance
the probability of duplicates and the message delivery order.
During the ReceiveMessage operation, instead of always
retrieving the oldest message ID from the message index, the
system will retrieve a random one among the oldest K IDs.
The larger the value of K, the less likely that concurrent
receivers will obtain the same message, but the more out-
of-order the returned message sequence will be. The system
exposes the value of K as a configurable parameter for each
queue. A value K = 1 produces the best order with potential
duplications, whereas a large value of K reduces duplication.

3) Visibility Timeout without Using Timers: As discussed
in previous section, the visibility timeout protocol used by
existing cloud-based queuing systems offers a lightweight end-
to-end protection mechanism for application level reliability.
BDQS adopts the same protocol for its client API. Concep-
tually, realizing the visibility timeout requires simply main-
taining a timer for each received-but-not-yet-deleted message
in the system. However, a direct and naive implementation
using off-the-shelf timer packages, such as Java Timer or
Quartz, has a number of deficiencies. First, most these timer
packages keep the timer related objects in memory. Therefore
the timer information cannot survive a node failure. Although
such a failure will not result in message loss, as previous
invisible messages will just reappear when the timers are
lost, unnecessary duplication of messages will occur. Second,
to ensure scalability, multiple front-end nodes are used in
a cloud-based service. For the timer to work correctly, a
DeleteMessage request must be forwarded to the node
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that previously handles the ReceiveMessage for the same
message and thus holds the timer in memory. Otherwise, the
DeleteMessage will fail, resulting in increased duplication.

To address these issues, we augment the semantics of
the timestamp information in the message index to support
visibility timeout. Each entry in the message index list is a
tuple (7',I), where T is a timestamp indicating a point in
time after which the message referenced by I is available for
retrieval. The tuples in the list is kept sorted in ascending
order of the timestamps. Before we delve into the details of
the various operations, we point out that the essence of this
design is the fact that 7" may be a timestamp in the future,
in which case, the message is considered “invisible.” To best
describe how it work, it is easier to consider a sequence of
operations (illustrated in Figure 1).

e When SendMessage is invoked, the system creates
a unique message ID I, for the new message and
records the current time Tyow. A tuple (Thow, Imsg) 1S
inserted to the message index list of the given queue.
This indicates to the system that this particular message
becomes available for retrieval (visible) at 7}, , that is, it
can be received immediately. As stated earlier, the content
of the message itself is stored separately in the distributed
storage system, indexed by Ip,gq.

e When ReceiveMessage is invoked, the system re-
trieves a random tuple (T, Is,) among the first K
ones in the sorted message index list for the queue, as
described in Hinted Tradeoff between Order and Dupli-
cation. There are two cases with respect to the value of
T in relation to the current time Tyow. If T < Ty 0w, this
message is available to be returned. To temporarily make
the message invisible, the value T of the tuple is modified
to be 7" = Tpow + Tyto, Where Ty is the visibility
timeout value. If T' > T},,y, it means that all messages in
the queue are currently invisible, and therefore the queue
is empty and nothing is returned.

e When DeleteMessage is invoked, the system obtains
the message key I, from the request, removes the tuple
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A sequence of queue operations illustrating how visibility timeout is implemented in BDQS.

(T, Imsg) from the message index list, and also deletes
the message content itself.

This algorithm realizes timer functions with minimal over-
head to the message index. Because the timer information is
stored in the distributed storage as part of the message index, it
solves the two aforementioned problems. First, the timers be-
come persistent now and can survive node failure. Second, the
timer information is available to any front-end node accessing
the distributed storage, eliminating the need for maintaining
states in the front-end to correlate a DeleteMessage request
with its preceding ReceiveMessage request.

C. Deployment Architecture

BDQS consists of three main logical components. The
distributed storage component provides persistence for the
messages, message indexes and other queue related metadata
across a commodity cluster. The gueue operations component
implements the aforementioned queue API supporting visibil-
ity timeout. Because all states related to queuing operation are
persisted in the storage layer, the queue operations component
is designed to be completely stateless so that multiple instances
can be deployed to support concurrent client access. It exposes
its functionality through a native API. To enable a wide variety
of clients to access the service, an HTTP REST component
provides a RESTful interface of the native queue API via
HTTP binding, using a protocol similar to that of SQS.

In a cloud-based deployment, a number of VM instances
are created on an Infrastructure-as-a-Service (laaS) platform,
each consisting of one instance of each component described
above, as shown in Figure 2. A dispatching mechanism routes
incoming client requests to a REST interface instance. This
can be achieved using either a dedicated HTTP dispatcher or
round-robin DNS. To provide adequate service level to clients,
a separate monitoring mechanism controls the dynamic scaling
of the VM cluster. There are two different reasons for scaling
the system. First, more storage capacity is needed to handle
increased number of queued messages. Second, more VMs are
required to cope with increased request rate from clients. The
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Fig. 2. The system architecture of BDQS allows it to be deployed as a
shared service in an IaaS environment with elastic scaling.

monitor collects information about current storage size and
average response time, decides if the system should be scaled
up or down, and interacts with the laaS layer to carry out
these actions. Request dispatching and dynamic scaling are
two issues common to any cloud-hosted shared service and
are orthogonal to the proposed queuing service; hence they
are not discussed in details in this paper.

IV. IMPLEMENTATION

We have implemented a prototype of BDQS according to
the system architecture outlined in the previous section. This
section describes a few details of the prototype system.

A. Cassandra and Data Store Design

We have chosen Cassandra as the distributed storage
provider in the prototype of BDQS. Cassandra is a distributed
storage system based on a DHT design with a more sophis-
ticated data model. A simple DHT provides an abstraction of
a map from keys to values (k — v) where the entries are
distributed across the system according to a hashing scheme.
Without going into great details, Cassandra can be described
as a four-level nested maps from keys to super column families
to column families to columns to values (k — SCF —
CF — C — v), where super column family is an optional
construct. The collection of column families, columns, and
values referred to by a key is called a row in Cassandra. As in
a DHT, rows are distributed across the entire system according
to some hash value of the key.

Cassandra supports high availability by replicating data
among the storage nodes, where the number of replicas N
is a configurable parameter. When reading and writing data,
Cassandra provides several consistency policies that specify
how many replicas have to acknowledge before a request is
returned. They are commonly classified as 1 (single replica),

N (all replicas), and ) (a quorum of at least (N +1)/2 repli-
cas) [18]. To provide high system performance, no distributed
locks are used in the higher layer algorithms as described
before and strict queuing consistency is not guaranteed by
design. As a result it is not necessary to require strong storage
consistency from Cassandra. Therefore we use the single
replica policy for both reads and writes.

There are three main resource types in BDQS—account,
queue, and message. They are stored as Cassandra rows
(shown in Figure 3), each uniquely identified by a key,
which takes the form of XYZ-id, where XYZ is a three-
character prefix and id is created by hashing a human readable
unique name. This design distributes the data across the entire
Cassandra cluster and yet allows direct access to any objects
without having to search through multiple levels of indirection.

Accounts is the root object holding references to all
accounts. It contains pointers to individual account objects. An
account has two column families: Metadata and Queues.
The former contains account information such as owner’s
name, console logon password, secret key, etc. The latter
contains references to the queues in the account. Queues are
the cornerstones of the system. Among the several column
families, Messages stores the IDs of all messages in the
queue and Appearances stores the timestamped message
index list as described in previous section. Finally, the message
objects store the actual payload of the queued messages.

B. Prototype Implementation

The prototype implementation uses Apache Cassandra in-
cubator version 0.6.0. No modifications are made to the
source and the public Thrift interface is used to access its
service. The aforementioned data store schema is defined in
storage—conf.xml. Cassandra service is run as a daemon
process using 32-bit JDK 1.6 with 3.5GB maximum heap size.
Default locations for Cassandra data directories are used and
they reside on the same VM storage volume. We remark that
this is not the optimal deployment strategy for Cassandra, but
it is sufficient for the scalability and consistency evaluation
of BDQS. In a tuned production environment, the actual
performance of BDQS would be higher than presented here.

The queue operations component is implemented in about
6000 lines of Java. It provides a Java interface to account-,
queue-, and message-related operations. It also performs user
authentication and access control. The HTTP REST interface
along with an administrative console is implemented with
about 1000 lines of PHP/HTML and 3000 lines of Java servlet
handlers. These two components are hosted on WebSphere
sMash [2], a lightweight Web application container.

A simple client-side Java wrapper of the HTTP REST
interface is also implemented. It is used by the test drivers
to access the queuing service.

V. SYSTEM PERFORMANCE EVALUATION

The prototype of BDQS is deployed on an internal research
cloud computing platform. Simulation drivers are used to
generate a synthetic workload to benchmark the system’s
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performance and consistency. We also compare the consistency
level of BDQS against an existing service, Amazon SQS.

A. Evaluation Methodology and Metrics

A cluster of N virtual machines is used to host the cloud-
based message queuing service. Each VM has 1 processor
core, 6GB of RAM, 36GB of disk space, and is connected
to a Gigabit Ethernet network. The replication factor of
Cassandra is set to be 3, which is typically used in a multi-
data-center deployment to provide high availability. Cassandra
configuration recommendation is followed to set its thread
pool size appropriately for uniprocessor VMs: 4 threads for
read and 8 threads for write. The thread pool size for the
sMash container is set accordingly to 16, so that the HTTP
REST handler layer does not become a bottleneck.

The test workload is generated by two programs—sender
and receiver. To simulate a shared service deployment sce-
nario, a separate cluster of 20 VMs (with the same hardware
configuration as the server VMs) is used to host the senders
and receivers. Each VM runs a single sender and receiver.
They are configured to use the HTTP REST interface to access
the queuing service. A sender program simulates ¢ sending
applications, resulting in a total number of queues in the
system () = 20q. Each sending application sends messages
to a separate queue using Tgenq threads. Each sending thread
sends m messages to the queue with dgenq seconds delay
between successive send operations. For each sender program
there is a corresponding receiver program, which simulates
q receiving applications, each of which receives messages
from the corresponding queue that the sending application
uses. Each receiving application uses T, threads to receive
and process the messages. Each receiving thread reads a
message from the queue, processes the message in Jrecy
seconds, deletes the message, and repeats the process. The
total number of messages sent and received during a test run
is M =Q - Tseng - m.

Unless mentioned otherwise the queues are configured with
consistency level hint of K = 1, that is, favoring order, and
the default visibility timeout value is set to 10 seconds. This
relatively small number reflects the nature that the service is
being stress-tested with very short turnaround time. In real
application scenarios, a timeout value would have to be set
commensurate with the application’s processing speed.

To better characterize the sending and receiving behavior of
the system, the sending and receiving operations are executed
in two separate phases. First, all senders are launched simul-
taneously. After they have finished sending the specified mes-
sages, all receivers are launched simultaneously. Each experi-
ment is repeated three times, the trace data are collected, and
the average values of the following performance metrics are
computed. Send rate is the number of SendMessage oper-
ations that the system services in one second. Receive+Delete
rate is the number of combined ReceiveMessage and
DeleteMessage operation cycles that the system services
in one second. Send response time is measured from the
moment a SendMe s sage operation is invoked to the moment
the response is received. Receive response time is measured
from the moment a ReceiveMessage operation is invoked
to the moment the response is received.

The following consistency metrics are also measured: du-
plication rate, loss rate, and message order. During each
test run duplicate messages are detected. If the number of
duplicates is Mqup, the duplication rate is A = Mayup/M.
Each message contains a payload of L random bytes with a
checksum. The receiver verifies the checksum to determine
if a message is corrupted in transit. A message is considered
lost if its payload is corrupted or it is not received at all.
The loss rate is € = Moss/M. For each sender-receiver
pair of a queue, there exists a deterministic, correct order
of message delivery sequence. To quantify the degree of
out-of-orderness, two metrics are defined. The first metric,
out-of-order rate, is defined as the ratio of the minimum
number of messages that have to be re-ordered to the total
number of messages in the sequence. To calculate this value,
messages are tagged with sequence numbers at the sending
end and dynamic programing algorithm is used to find the
longest monotonically increasing sub-sequence at the receiving
end. Messages not in the sub-sequence are considered out-of-
order. The second metric, average displacement, is defined
as the average difference of message positions in the received
sequence versus those in the correct sequence.

Out-of-order rate measures the absolute number of out-
of-order messages while average displacement reflects the
average re-ordering delay at the receiving end if or-
der is desired. For example, consider a sequence of
message {mji,ma, mgz, mg, ms}. If the received order is



{ma, m1, ms, mg, ms}, the out-of-order rate is 20%, since
only m; needs to be re-ordered, and the average displacement
is (1+14+0+0+40)/5 = 0.4. If the received order is
{ma, m3, my, ms, m}, the out-of-order rate is still 20% but
the average displacement is (1 + 1+ 1+ 1+ 4)/5 = 1.6.
Together these two metrics paint a comprehensive picture of
the message order. Because the duplication metric is defined
and measured separately, duplicates are excluded from these
two metrics. This is slightly different from the method used
in [4], which combines out-of-order measure with duplicate
measure.

B. Performance of the Queuing Service

1) System Scalability: To evaluate the overall scalability of
the system, the cluster size IV is varied from 10 to 70. For
each number NV, a series of tests is performed with increasing
workloads. During the tests, the number of queues (q) is
varied from 1 to 50 per sender, resulting in total number
of queues (@) in the system between 20 and 1000. The
following parameters are fixed: Tiend = Trecy = 3, m = 100,
dsend = Orecvy = 0, and L = 2048B.

The top two plots in Figure 4 show how the rates of send
and receive react to increasing workload. For each cluster
size, the throughput increases as the workload increases.
After a certain point, the utilization of the system reaches
saturation and the throughput stops increasing. Note that, the
ReceiveMessage operation involves more Cassandra op-
erations than SendMessage. Therefore the Receive+Delete
rate is slower than the Send rate under the same test condition.

The bottom two plots in Figure 4 show how the throughput
changes in relation to cluster size under the same workload.
The result indicates that the system exhibits linear throughput
scalability. Since the highest workload (1000 queues) is not
able to saturate the two largest systems (N = 50 and N =
70) completely, the total curves in these two plots show less
than linear increase. We expect that a higher workload would
demonstrate the full capacity of the system.

2) Queuing Behavior: The previous scalability test stresses
the system to determine its maximum throughput. Queu-
ing theory states that as a system approaches its maximum
throughput, its response time increases exponentially, render-
ing the system unresponsive. Another series of tests is per-
formed to study the queuing behavior of the queuing service,
that is, how response time changes in relation to throughput.
The number of queues (()) and the send/receive delays (Jsend
and d,..y) are varied to create different levels of workloads,
from very light to very heavy. For four different cluster sizes
(N = 10, 30,50, 70), the response times of SendMessage
and ReceiveMessage are measured and plotted against the
respective rates.

The results are shown in Figure 5. It shows that the system
exhibits a typical M/M/k queuing behavior. When the system
is not stressed, e.g., when the throughput is less than 80%
of the maximum, the system is very responsive—the average
response times for SendMessage and ReceiveMessage
are below 200ms. When the workload increases beyond a

threshold the system saturates and the throughput stops in-
creasing. Meanwhile, the response times start to increase
dramatically.

As discussed earlier, the average response time of the system
can be monitored and used as a trigger to control the scaling
of the server cluster. When it increases past a threshold, new
server nodes are added to the system to increase its overall
capacity. This enables the system to become extremely elastic
and adapt to workload fluctuation. The control mechanism
is common among a number of hosted shared cloud-based
services and is not unique to the queuing service. Therefore
it is not discussed in this paper.

C. Consistency Level of the Queuing Service

A series of experiments is performed to evaluate the con-
sistency level offered by BDQS. The following configuration
parameters are used: N = 50, Q) = 400, Tienq = 3, m = 100,
L = 2KB, dseng = 0, 0rccy = 1s. The number of receive
threads per queue, Tiecy, 1S varied from 1 to 3 to generate
different levels of concurrency in ReceiveMessage op-
erations. Three consistency level hints are evaluated, K =
1,2, 3. To compare them against a no-order system, the same
workload is also tested on Amazon SQS.

In all tests, the loss rate € is zero, that is, no messages are
lost and corrupted. The three plots in the top row of Figure 6
show how the three consistency metrics—duplication rate,
out-of-order rate, and average displacement—changes with
different degrees of concurrency. The three plots in the bottom
row show how these metrics vary with different consistency
level hints (/) given the same concurrency. These results show
that, with no concurrency (7yecy = 1), both BDQS and a no-
effort system produce negligible amount of duplication. When
concurrency increases, duplicate rate increases for BDQS. The
rate of increase depends on the consistency level hint—the
more order is favored, the more duplicates are produced. In a
no-order system, random sampling is used to retrieve message.
Therefore the duplication rate remains low when concurrency
increases.

On the other hand, BDQS produces significantly fewer
out-of-order messages. With consistency level hint K = 1,
almost all messages are delivered in order, whereas the no-
order system delivers about 50% of messages out of order.
Out-of-order measures increase as K increases, but they are
much smaller than those of the no-order system. Even with
K = 3, the average displacement of BDQS is an order-of-
magnitude smaller than that of a no-order system. This result
shows that BDQS offers client a flexible way to specify the
desired tradeoff between the two aspects of consistency—order
and duplication. In fact, the no-effort approach can be viewed
as a special case of BDQS, where K = oo.

D. Reliability and Fault Tolerance of the Queuing Service

An important aspect of a shared, cloud-based service offer-
ing is its reliability and availability. To study how well BDQS
tolerates failures, three tests are performed with artificially
injected failures in the system. The first test evaluates how
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The relationship between response time and throughput roughly follows a M/M/k queuing model—the response time increases gradually initially as

the workload increases; when the throughput approaches its maximum value the response time increases dramatically.

well the system handles network failures while the second
test evaluates how well the system copes with client failures.
The third test evaluates the system’s ability to deal with server
failure.

Network failure is simulated by randomly dropping either
the HTTP request or HTTP response according to a probability
in the client API library. Client failure includes two cases—
sender failure and receiver failure. Sender failure can not result
in loss message, but will cause duplicate messages to be sent
to the service in proportion to the sender failure rate. Therefore
sender failure is not explicitly evaluated. Receiver failure may
result in end-to-end message loss if no reliability protocol
is used. It is evaluated in the test by randomly quitting and
restarting a receiving thread according to a preset probability.

The test workload for evaluating network and client failure
tolerance is generated with the following parameters: N = 50,
Q = 400, Tsena = 3, m = 100, L = 2KB, §send = 5recv = 0.

Figure 7 shows how the performance metrics and consis-
tency metrics vary with increasing failure probability (p =
0.0001,0.001,0.01,0.1). (In all cases, the message loss rate
€ is 0, and therefore is not plotted.) The results indicate
that BDQS handles network and client failure well. The
performance metrics degrade slightly with a very high failure
rate of 10%. The consistency metrics degrade significantly
with failure rate of 0.1, but stay relatively constant for other
lower failure rate numbers. We remark that the failure rate in
reality is probably closer to the lower end of the simulation
than the upper end. This shows that BDQS is able to provide
good reliability in the face of network and client failures.

Server failure is simulated by randomly killing the Cas-
sandra and sMash processes on a server VM and restarting
those processes after a recovery period. During the recovery
period, clients continue to send and receive messages without
stopping. The frequency and duration of the server failure are
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controlled by two parameters: Mean Time To Failure (MTTF)
and Mean Time To Recovery (MTTR). In order to complete
the test in a reasonable amount of time, three MTTF numbers
are used: 100s, 1000s, and 10000s. MTTR is fixed at 10s. We
remark that these numbers are extremely short compared to
what would be expected from a real world deployment. There-
fore, the results illustrate worst-case scenarios. The following
parameters are used to generate the test workload®: N = 50,
Q = 200, Tyena = 3, m = 100, L = 2KB, dsena = 0.5,
5recv =2s.

The R = 1,W = 1 curves in Figure 8 show how the
performance metrics and consistency metrics change with the
different server MTTF numbers. (Again, there is no message

3The test clients are slowed down so that there will be enough server failure
events during a test run.

0.001
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0
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0.01 0.1 0.001 0.01
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Queuing performance and consistency metrics in network and client failure scenarios.

loss, and therefore € is not plotted.) The results indicate that the
send operation is not significantly affected by server failure,
while the performance of the receive operation degrades as
the server failure frequency increases. The consistency metrics
degrade when servers become less reliable. However the values
are still acceptable. Again, we caution that server MTTF in
real life will be significantly higher than even the highest end
number in the test. Therefore, we have reason to expect that
BDQS will perform extremely well in real deployment.

VI. CONCLUSION AND FUTURE WORK

Queues provide reliable, asynchronous communication
channels for connecting software components. Queuing is
widely used as a form of connectivity to support large-
scale, distributed, and fault-tolerant applications. It plays an
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important role in cloud computing when offered as a shared
could-based service to applications. This paper presents the
design and implementation of BlueDove Queueing Service, a
cloud-based queuing system. It builds on Cassandra and pro-
vides high availability and network partition tolerance. At the
same time, it offers almost-in-order and at-least once delivery
guarantee with user-configurable trade-off between delivery
order and duplication. This is an improved consistency model
than current state-of-the-art queuing services.

Extensive evaluation indicates that BDQS performs well
and is highly scalable. It also provides clients with flexible
consistency tradeoff options between order and duplication.
Experiments show that BDQS delivers significantly reduced
number of out-of-order messages with similar duplication rate
when compared to existing systems. We remark that each
replica of the message index of a queue resides on a single
storage node. Thus the node’s storage capacity divided by the
size of message keys is the upper bound of the number of
messages a queue can hold. This upper bound is large because
a message key contains only a timestamp and an ID. In return,
the system is able to offer almost-in-order delivery. Therefore,
it is a trade-off that potential applications need to consider in
deciding what queuing service to use.

There are a number of future improvements that can be
made to the system. First, the current consistency level hint
is set statically. As the experiments show, the duplication
rate depends on the degree of concurrency. Therefore, it is
desirable to design an algorithm that adjusts the value K
dynamically, thus achieving the best possible combination
of in-order delivery and no-duplication. Second, under the
CAP framework, Cassandra provides the AP combination
with reduced consistency. It will be interesting to study the
implication of how distributed storage systems with other
combinations (e.g., CP) affect the overall queuing consistency.
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