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Abstract. Many pervasive-computing applications depend on knowledge of user
location. Because most current location-sensing techniques work only either in-
doors or outdoors, researchers have started using 802.11 beacon frames from ac-
cess points (APSs) to provide broader coverage. To use 802.11 beacons, they need
to know AP locations. Because the actual locations are often unavailable, they
use estimated locations fromar driving. But these estimated locations may be
different from actual locations. In this paper, we analyzed the errors in these es-
timates and the effect of these errors on other applications that depend on them.
We found that the estimated AP locations have a median error of 32 meters. We
considered the error in tracking user positions both indoors and outdoors. Using
actual AP locations, we could improve the accuracy as much as 70% for indoors
and 59% for outdoors. We also analyzed the effect of using estimated AP loca-
tions in computing AP coverage range and estimating interference among APs.
The coverage range appeared to be shorter and the interference appeared to be
more severe than in reality.

1 Introduction

Pervasive computing applications often need to know the location of users. This loca-
tion information should be available anywhere, both indoors and outdoors. While some
location sensing techniques, such as Cricket [11] and Bat [5], provide high accuracy,
they are mostly limited to indoor usage. On the other hand, satellite navigation sys-
tems like GPS [4] are useful for outdoor navigation, but they do not work well in urban
settings due to the “urban canyon” effect.

To address these limits, researchers have started using 802.11 beacon frames from
access points (APs) to locate wireless network users. Intel's Place Lab [3, 8] provides
software that can track users both indoors and outdoors. Skyhook Wireless [13] pro-
vides a similar commercial solution for locating Wi-Fi users. These approaches require
knowledge of the (actual or estimated) location of APs. In addition to user-location
tracking, researchers also use the location of APs to analyze wireless network charac-
teristics such as the coverage range of APs or interference among APs.

Although we may be able to get the actual location of APs for managed networks,
it is almost impossible to get the actual location of unmanaged networks. Thus, re-
searchers [3, 1] recently started using the AP locations estimated thwargdriving.

War driving is the process of collecting Wi-Fi beacons by driving or walking through
a town, to discover and map the location of APs [7]. Because war driving is easy and



can be performed by anybody with a wireless card, a GPS receiver, and war-driving
software, it is an effective way of collecting AP location information. The AP locations
determined by war driving, however, are estimates rather than actual locations. Thus, it
is important to understand the errors in these estimates and the effect of these errors on
other applications that depend on these estimated AP locations.

The main goal of this paper is to understand the effect of using AP locations es-
timated through war driving. We do not want to discourage people from using the es-
timated AP locations, but rather we want to encourage them to use the data with an
appropriate caution. Our focus is on comparing various results using estimated AP lo-
cations against those using actual AP locations. We explored the error in estimated AP
locations. The median error in estimated AP locations was 32 meters. We considered the
error in tracking user positions both indoors and outdoors. Using actual AP locations,
we could improve the accuracy of user location estimates as much as 59% outdoors
and 70% indoors. We also analyzed the effect of using estimated AP locations in ana-
lyzing AP coverage ranges and estimating the interferences among APs. The coverage
range appeared to be shorter when estimated AP locations are used and the interference
among APs appeared to be more severe.

2 Related work

Many wireless network users use war-driving data to learn the location of APs for (free)
Wi-Fi connectivity. There are several Internet Web sites, including WiFiMaps.com [15],
that collect and provide this information. People discover Wi-Fi hotspots through war
driving and upload their data to these sites. As the main goal of these Web sites is
to discover available Wi-Fi connectivity, it is not important to accurately estimate the
location of APs, but this may not be the case for other applications.

Although the accuracy of AP location estimates can be improved with additional
hardware, such as directional antennas [12], it is often more time consuming to collect
data using extra hardware and this hardware is not commonly available among typical
Wi-Fi users. War driving without extra hardware seems to be an easy and convenient
way to collect AP locations for larger areas, although its estimates may be inaccurate.

There are many applications that need to know the accurate location olLAPs.
calizationis the process of determining the physical location of a user. Localization
techniques that use Wi-Fi beacons depend on accurate information about the location
of APs. Place Lab [3] uses the AP location estimates from war driving to track a user’s
location. Other localization techniques [2] assume that the locatiom$ereénce points
are known without specifying methods to discover their locations. Just as in Place Lab,
one could use the location estimates from war driving for these approaches. Besides
localization, researchers have started using AP location estimates to study AP deploy-
ment characteristics such as AP density and interference among APs [1]. Unlike the
original motivation for war driving, which is finding Wi-Fi hotspots, these applications
are highly affected by the accuracy of AP locations. Thus, it is critical to analyze the
accuracy of estimated AP locations and understand their impact on the applications that
depend on them. The only previous work that analyzed the accuracy of AP locations
estimated through war driving is not comprehensive; it considered the location of only
five APs [9]. To the best of our knowledge, ours is the first research study to analyze in
a large scale the accuracy and the impact of using AP location estimates.



3 Methodology

As researchers have started using data collected by war driving for applications such
as localization, it is important to understand the errors in war-driving data. Given the
actual AP locations on our college campus, we performed war driving on the campus
and obtained the estimated AP locations.

We believe that the Dartmouth college campus is an ideal place to perform this
study. First, Dartmouth has wireless coverage almost everywhere on the campus. Sec-
ond, all APs on the campus are centrally administrated. Thus, it is relatively straight-
forward to obtain information about these APs. Third, information about the location of
APs is up-to-date since we have recently replaced all of our APs and recorded detailed
location data.

In the following sections, we describe the process of mapping APs on our campus
map, war driving on the campus, and the algorithms from Place Lab that we used to
estimate AP locations and to track user positions.

3.1 Actual AP locations

To understand the effect of using AP location estimates, we first need to obtain the ac-
tual AP locations to serve as the ‘truth’. We were lucky to have access to the actual AP
locations on our college campus. Our network administrators keep records of the loca-
tion of APs on floor plans of campus buildings. Using these floor plans, we determined
the precise location of APs on the campus map. These locations serve aduthe
locations. In this way, we mapped 927 APs. Out of 927, 44 APs are dedicated to air
monitoring and the rest are regular APs. The air monitors collect network statistics and
work only in a passive mode, not sending out any signals. Except seven APs that support
only 802.11g, all APs support both 802.11a and 802.11g. While 100% of the APs on
our campus support 802.11g, this ratio is much lower for observed unplanned networks
in Pittsburgh: 20% supporting 802.11g and the rest supporting only 802.11b [1].

3.2 War driving

To understand the effect of using estimated AP locations through war driving, we drove
and walked around our campus. We used a Linux laptop and a Sismoet 350wire-

less card, which supports 802.11b. The laptop rarPthee Lab stumbler 2.@ collect
beacons from APs. We also carried a GPS device, Gaetnéx attached to the laptop.

We drove around the campus with these devices at a speed of 10 miles/hour or less
to allow the wireless card enough time to pick up beacons. Our war driving lasted about
80 minutes. Since we could not drive close to many buildings, we decided to augment
the war-driving data witlwar walking

We walked around the main parts of the campus to cover the areas that cars cannot
reach. We collected war-walking data for about 200 minutes. Because both war driving
and war walking use GPS readings to locate the position of the recorder, we had to stay
outdoors. To get signals from as many APs as possible and also not to bias the AP-
location estimates towards one direction, we wal&ezlindeach building and tried to
stay close to it as long as we had GPS signal reception. Unfortunately, we often encoun-
tered obstructions—such as trees, outside structures, and construction vehicles—that
prevented us from walking close to buildings.



3.3 Algorithms

Intel's Place Lab project [10] is well-known for using war driving data to locate APs
and perform localization by detecting Wi-Fi beacons from APs. We use the software
provided by Place Lab to estimate AP and user locations.

To estimate AP locations from war driving and war walking, we looked into three
positioning algorithms: centroid, weighted centroid, and particle filters. Givém
cation measurements, the geometric centsoid defined ax = "' | x;/n where
x; is location of theith measurement. This simple centroid does not consider the signal
strength of beacons. The weighted centroid considers signal strength received during the
scan. During our war walking and war driving, we observed values between -123 dBm
and -25 dBm. These values are linearly mapped to values between 0 and 100 and then
used as the weights for the weighted-centroid algorithm. The patrticle filter [3] is based
on Bayes’ theory. To estimate an AP’s location, it uses a sensor model that assigns
probabilities to particles based on the observed signal strength and the distance from
the particle to the observer. The default motion model is null since APs do not move.

To estimate user position, we use a particle filter with a sensor model that describes
the likelihood of observing a set of APs with their received signal strengths given the
particle’s distance to each AP. The default motion model moves particles random dis-
tances in random directions. Details on particle filters can be found in Hightower and
Borriello’s paper [6].

4 Understanding war-driving data

Our main goal is to understand the effect of using estimated AP locations rather than
actual locations on user-location tracking and wireless network characterizations. More
specifically, we explore following questions:

— How effective is war driving or war walking in discovering APs?

— How well can we estimate the location of APs by war driving or war walking?

— How well can we track user positions outdoors?

— How well can we track user positions indoors?

— What s the effect of using estimated AP locations on analyzing AP coverage range?
— What is the effect of inaccuracy in AP locations on analyzing AP interference?

4.1 Effectiveness of war driving
In this section, we consider the effectiveness of war driving or war walking in discover-
ing APs. Excluding 44 air monitors, we know the actual location of 883 APs deployed
on our campus. Out of 883 APs, we detected only 334 APs during war driving, and
detected an additional 187 APs through war walking. This makes the AP detection rate
38% for war driving and 59% for the combination of war driving and war walking. We
also detected 172 APs whose actual locations are unknown. We exclude these APs in
our analysis of errors in AP locations since we do not have the ground truth, but later
analyze their effect on estimating user locations (see Fig. 7 and 9). Table 1 summarizes
the number of APs detected during war driving and war walking.

Figure 1 shows the estimated location of APs on the Dartmouth campus map. We
see that the weighted-centroid algorithm estimated APs to be close to the war-driving



APs w/ known locatiopAPs w/ unknown location
Driving 334 56
Walking 384 155
Total 521 172

Table 1. APs detected during war driving and war walking. Note that the total is smaller than the
sum of war driving and war walking because many APs are detected during both.

Fig. 1. Estimated AP locations on campus mag.rharks denote 521 APs detected during war
driving and ‘X’ marks shows additional APs detected by war walking. Lines show war-driving
and war-walking paths recorded by a GPS device.

or war-walking tracks; estimated AP locations are often on the tracks recorded by the
GPS device. This tendency is especially strong around the edge of the campus where
there are fewer roads. One side effect of this outcome is that APs appear to be close to
each other. We later consider the consequences of this in Section 4.6.

Out of 883 APs, we only detected 521 APs during war driving and war walking.
Most of the 362 undetected APs are in the outer region of the campus where we did not
do war walking (e.g., the west end of the campus). But, some APs are actually in areas
that we walked around; these APs are inside large buildings (such as the main library in
the center of the campus) and mostly in the basement or on higher floors of bufldings.
Being outdoors on ground-level apparently prevented us from detecting signals from
APs in basements and on upper floors.

One of the important characteristics in understanding AP deployment is the density
of APs. The size of our main campus is roughly 1%rdsing this size, the density
using the actual number of APs is 927/&nwhile those based on the APs discovered by
war driving and war driving with walkingdriving-walking are 334/km and 521/kmj,
respectively. Cheng et al. [3] reported the density of three neighborhoods in the Seattle
area. Our density of 927/Kiris close to those of the downtown Seattle (1030) and
Ravenna (1000), while it is higher than that of Kirkland (130). Note that in computing

! The highest building on our campus has six floors above the ground level.
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density, we considered only the APs whose locations are known; if we include 172 APs
with unknown locations, we get the density of 10997km

We also present the number of APs detected at each scan by the Place Lab stumbler;
the stumbler scanned every two seconds. Figure 2 shows the cumulative fraction of
scans as a function of the number of APs for each scan. It includes the result for war
driving, war walking, and the two combined. War walking detected more APs than war
driving: The averages are 11.5 and 6.1 for war walking and war driving, respectively.
Since we did not, or could not, take exactly the same paths for war driving and war
walking, it may not be fair to directly compare these two averages, but war walking in
general seems to be more effective in detecting beacons than war driving. We expect that
this is because war walking is slower and its paths are closer to buildings where APs are
located. The average for combined is 10.0 APs per scan; this average is much higher
than the average reported by Cheng et al. [3] for three neighborhoods in the Seattle
area—2.66, 2.56 and 1.41—although the density of APs in two studies are similar. This
is mostly due to the fact that we augmented war-driving data by war walking, while
Cheng et al. collected traces only by war driving.

4.2 AP locations

In this section, we consider the error in AP-location estimates from war driving and
war walking using known AP locations on our campus. Figure 3 shows the error in
AP locations using three positioning algorithms. We consider two sets of APs: one
discovered by war driving only and the other discovered by either war driving or war
walking. We see that war walking helped reduce the error for both simple-centroid and
weighted-centroid algorithms; we are not sure why this is not the case for the particle
filter. For both sets of APs, the weighted centroid outperformed both the simple centroid
and the patrticle filter. Its median error using war-driving data was 40.8 meters, while the
error using both war-driving and war-walking data was 31.6 meters. In the remainder
of the paper, we only consider the AP location estimates generated by the weighted
centroid.
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Fig. 4. Test walks on campus map. This figure depicts GPS tracks of four outdoor test walks and
the locations of four buildings where indoor test walks were performed.

4.3 User location: Outdoor

To understand the effect of using estimated AP locations to estimate user position, we
walked along four, mostly non-overlapping, paths. Together, they cover the central part
of the campus. Each walk lasted around 10 minutes, including a one-minute pause at
a location. During these four outdoor walks, we detected 8 additional APs. We did
not include them in our war-walking AP set because adding the traces from test walks
affects the results. Figure 4 shows these four walks on the campus map.

We used Place Lab’s particle filter [3] to estimate user position using the beacon
data collected during the four walks. We estimated user paths using three sets of the AP
locations: actual, war driving only, and war driving and war walking combined.

Figure 5 shows the paths for the four test walks. For each walk, we plotted the
GPS track and the estimated paths using the three sets of AP locations. The circles on
the GPS track denote the location of the one-minute pauses. When looking at Walk 3,
the estimated tracks using AP locations from war driving and driving-walking were
particularly inaccurate. This inaccuracy is due to a big open area, which does not contain
any APs but is covered by several powerful APs around it. For Walk 4, estimated paths
were close to its GPS track because this walk was through an area with dense APs. For
all four walks, the estimated paths converged with GPS tracks near the pause locations,
presumably because the estimator corrected the user location as it detected beacons
from more APs located near the pause location.

Figure 6 shows the error in user location estimates. The GPS tracks again served as
the ground truth. The error is the difference between the GPS tracks and the estimated
paths, computed every 20 seconds. For each walk, errors with actual, war-driving, and
war-driving with war-walking AP locations are shown. The errors using actual AP lo-
cations were much smaller than those using the war-driving AP locations. Compared
to errors using driving-walking, the errors of the actual set are smaller for Walk 3, and
about the same for the other walks. The reason for this closeness is because we walked
along similar paths during the war walking. In summary, the median error in four walks
using actual AP locations ranged 19-34 m, that for war driving ranged 46—-63 m, and
that for driving-walking ranged 19-43 m.
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Although Figure 6 clearly shows that actual AP locations outperformed war driving,
one might wonder whether it is due to the fact that we know the location of a bigger
number of APs (883). To factor out this problem, we ignored the actual location of APs
that were not detected during war driving and war walking. Thus, we only used the same
set of APs that were detected during war driving; we did the same for driving-walking.
Table 2 shows the result. Each number is the median of the normalized improvement
for every user positiorvnedian((e"e_i,“i) x 100%) wheree; anda; are the errors using
estimated and actual AP locations, respectively, forth@osition. We used 334 actual
AP locations for war driving, and 521 locations for driving-walking. When we used the
actual AP locations, the accuracy improved for both war driving and driving-walking.
The median improvement ranged 5%-59%. Having accurate AP locations is important
to estimate user position correctly.

During war driving and walking, we discovered 172 APs whose actual locations
are unknown. We considered whether using these extra APs reduces the user location
error. Figure 7 shows the error for the two sets of APs: drive-walk and drive-walk with
unknown APs. Note that all these AP locations are estimates. The result shows that



Walk number 1 2 3 4
Outdoor: drive 33% 31% 17% 59%
Outdoor: drive-wal 13% 5% 28% 14%
Table 2. Improvement in outdoor user-location estimates by using actual AP locations instead of
estimated AP locations. We used a subset of actual locations of APs that were detected during
war driving and driving-walking. The median of normalized improvement is depicted.

Building[Duration (minute)Floors
1 14 Basement, floor 1, 2, 3 and 4
2 9 Basement, floor 1 and 2
3 7 Floor 1, 3 and 4
4 6 Basement, floor 1 and 3

Table 3.Indoor walks. This table shows the floors that we walked within each building.

using extra APs did not make much difference; for all four walks, it even increased the
95% error values.

4.4 User location: Indoor

The main benefit of using Place Lab over a GPS device is that it is usable where a
GPS signal is not available. A Place Lab paper by Cheng et al. [3] contains a simple
evaluation of indoor accuracy of user positions. They visited nine indoor locations and
found that the location error ranges from 9 to 98 meters. In this section, we further
explore the accuracy of Place Lab in tracking user positions indoors.

To estimate our position indoors, we marked points on the building’s floor plan as
we walked. While the latest Place Lab source includes a stumbler using this method,
we had trouble getting it to work on our stumbler laptop. In addition, many of the floor
plans were oriented at odd angles, which Place Laaipwadformaf does not support.

We wrote a new stumbler to map the floor plans to the campus map using conversions
we derived earlier as we mapped the known AP locations on the campus map.

We chose four buildings, most of whose APs were detected during either war driv-
ing or war walking; we in fact walked around each of these four building during war-
walking. Figure 4 shows the location of these buildings on the campus map. We walked
inside of these four buildings, covering three or more floors within each building. The
duration of our indoor walks ranged from 6 to 14 minutes; this duration does not include
time that we took to move to the next floor. Table 3 shows the duration and the floors
that we walked within each building.

During our indoor test walks, we detected an additional 24 APs, many more than
the 8 discovered in our outdoor walks. This result is not surprising since we stayed
only outdoors during war driving and war walking. We can imagine using our software
extension to do war walking indoors to augment the data collected by outdoor war
driving and walking. But, indoor war walking may not be possible in other situations
since it requires physical access to buildings and digitized floor plans of those buildings.

Figure 8 shows the error in user positions using the actual AP locations and war
driving with walking. We could not use the AP locations estimated from war driving
only because we did not have enough APs to make reasonable user-location estimates

2 A format that includes maps and sets of places [10].
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Building number 1 2 3 4

Indoor: drive-walk 14% 53% 17% 70%
Table 4. Improvement in indoor user-location estimates. We used a subset of actual locations of
APs that were detected either during war driving or war walking.

for indoor walks. For example, through war driving, we did not discover any APs in
Building 1. The error in user position was computed every 10 seconds.

Compared to outdoor walks, indoor walks had smaller absolute errors. This dif-
ference is partly because each indoor walk covered a smaller area than the outdoor
walks. The median error using actual AP locations ranged from 7 to 11 meters, while
that using estimated AP locations ranged from 15 to 30 meters. On the other hand, the
relative difference between using actual and estimated AP locations was bigger than
the difference for outdoor walks because we could not do war driving or war walking
inside of buildings and the estimated AP locations were often close to war-driving or
war-walking paths. Note that Building 1 had some big errors; its maximum error was
91 meters. These large errors were due to the walk in the basement, which is under the
ground level without any windows; the other two buildings (2 and 4), in which we also
walked in the basement, are half underground with windows.

As we did for the outdoor test walks, we computed the median relative improvement
for indoor walks. We used the actual location of the same set of APs that were detected
during war driving and walking to compute the user-position errors. We then computed
improvements in user position errors using these actual AP locations. Table 4 shows the
median relative improvement, which ranged 14—70%. The average indoor improvement
for four buildings (38.5%) was greater than that for outdoor walks with driving-walking
(15.0%).

We now consider the effect of using the extra 172 APs in estimating indoor user
location. Figure 9 shows the error for both driving-walking and driving-walking with
unknown APs. Using extra APs did not make much difference in median errors; it re-
duced the 95% error for Building 2, but increased it for the other three buildings. Al-
though there was a much larger worst-case error in two buildings, these cases represent
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outliers. In summary, for both outdoor and indoors, using extra APs did not make much
difference.

For context-aware applications such as a shopping assistant [14], it is important
to know whether a user is inside of a building or outdoors. For example, if a user is
inside of a grocery store, his context-aware application may pull up the list of items
that are running short at home. On the other hand, if a user is passing by a grocery, the
application should not pull up the items but just remind the user that he may need to do
some grocery shopping.

Figure 10 shows the percentage of estimates for which the particle filter correctly
estimated user position to be inside using three different sets of APs: actual location
of 883 APs, actual location of 521 APs, and estimated location of 521 APs. (During
indoor walks, the user was inside 100% of time.) On average for four buildings, the
filter was correct 76% and 71% of time using actual location of 883 APs and 521 APs,
respectively, but it was correct only 42% of time using estimated AP locations. Note
that using the actual location of 521 APs produced smaller errors than using 883 APs
for Building 1; we do not yet have a clear explanation for this result.

4.5 Maximum signal coverage

On our campus, we have three models of Aruba APs: 52, 60, and 72. These Aruba APs
adjust their power level dynamically and some of them are deployed with special an-
tennas to cover larger areas. Furthermore, signal propagation in a complex environment
is difficult to predict. Thus, it is hard to specify the signal coverage range. Instead, we
computed it from empirical data gathered while war driving and walking.

For each AP, we computed the distance from the known AP location to the farthest
point where each AP was detected during war driving or war walking. Figure 11 shows
the cumulative fraction of APs as a function of the maximum signal range. To see the
effect of using inaccurate AP locations, we also included the maximum signal range
computed from AP locations estimated from war driving and driving-walking. Note
that because we used the data collected by war driving and war walking, the recorded



maximum range is only an approximation. (Ideally, we should circle around each AP,
increasing the radius for each round until we do not hear the signal.) Nonetheless, the
median using actual AP locations was exactly equal to the commonly believed range of
300 feet (91.4 m). The maximum observed range of all APs was 470.8 m.

When we used AP locations estimated from war driving or driving-walking, we
found more APs with small ranges than when the actual AP locations were used. This
results from the tendency of war driving and war walking to estimate APs to be close to
where beacons were detected, away from their true locations and closer to roads. The
medians were 93.2 and 74.9 meters for war driving and driving-walking, respectively.
The maximums were 431.8 and 413.0 meters.

4.6 AP interference

Although there needs to be some overlap in AP coverage areas to have seamless wire-
less connectivity, overlaps among too many APs reduce the effective throughput. We
computed the interference using AP locations with the 50-meter range used by Akella
et al. [1], who focused on characterizing wireless networks that are unplanned and un-
managed based on the assumption that these networks suffer from higher interference
than planned-managed networks. Here, we extract the same set of characteristics from
our planned-managed campus network.

The data in preceding sections of the paper are based on a campus-wide deployment
of 927 APs, as described in Section 3.1. Two months later, we set out to explore inter-
ference and the network had grown to 1042 APs, out of which 47 were air monitors. In
analyzing interference, we consider only the 995 regular APs.

Using actual AP locations: To analyze interference among APs, Akella et al. presented
the degree of each AP, where degree is defined as the number of other APs in interfering
range. Figure 12 shows the degrees of 995 APs computed using their actual locations
and the 50 m range assumption. Out of 995 APs, 976 APs had 3 or more neighbors.
This ratio of APs with 3 or more neighbors (98%) is actually higher than those for all
six cities that Akella et al. reported (approximately 25%—80%). This result suggests
that these nodes interfere with at least one other node since only three of the 802.11b
channels do not interfere much. The maximum AP degree for our campus was 82. This
number is high in the range (20-85) that Akella et al. reported. In short, we found that
the computed interference was actually more severe in our planned campus network
than the unplanned networks considered by Akella et al.

Figure 12 also includes the real degrees obtained from APs. Each Aruba AP checks
periodically which beacons it can detect on every channel and the master switch aggre-
gates this information from APs. Our 995 APs detected 1234 APs, including third-party
APs whose locations are unknown. We report two sets of data: one counting only the
995 APs that we know the location of, and the other counting all 1234 APs that our
995 APs detected. The former is included to compare against the computed degree,
while the latter presents real observed values. We can see clearly that the real degrees
were much smaller than ones computed using the 50-meter interference assumption.
The average degree from real data considering all APs is 6.6 and that considering only
known-location APs is 2.9. In contrast, the average degree with the 50-meter assump-
tion is 35.0 APs.
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Fig. 12. AP degrees. ‘computed’ denotes de-Fig. 13.AP interference. This figure compares
grees computed with the 50 m interference asthe degrees computed using estimated and ac-
sumption. Two ‘real’ lines present degrees ob-tual AP locations. For both war driving and
served by APs: one with all APs and the otherdriving-walking, the degree using actual loca-
including only the APs with known locations. tions is smaller than that using estimates.

Channe|Number of APsAverage degredlax degree
1 294 2.3 13
4 229 11 8
8 202 1.2 8
11 270 2.6 12

Table 5. AP degrees for different channels of 802.11g

The main reason that the computed interference degree is much larger than the real
observed one is the fact that our campus wireless network is a planned-managed net-
work and the power levels on APs are adjusted to minimize interference. We expect that
the difference will be smaller for unplanned-unmanaged networks [1]. Another reason
is that, in reality, obstructions can prevent APs from hearing each other even they are

located close to each other.

The interference degree may in fact be even less than the values depicted as ‘real’
in Figure 12 because multiple channels are used for APs and APs on different channels
do not interfere much. The 802.11g APs on our campus are evenly divided into four
channels: 1, 4, 8, and 11. We consider the interference degrees observed within each
channel, that is, the number of APs whose beacons can be heard on the same chan-
nel. Table 5 presents the number of APs on each channel, the average degree, and the
maximum degree as observed by the APs. This result includes APs whose locations are
unknown. The average degree for the four channels ranges from 1.1 to 2.6.

Using estimated AP locations: We now consider the effect of using estimated AP
locations in computing AP degrees. Figure 13 shows the AP interference using four sets
of AP locations: actual location of 334 APs, estimated location of those APs detected by
war driving, actual location of 521 APs, and estimated location of those APs detected
by driving-walking. Not surprisingly, smaller sets (334 APs) have smaller degrees. It
is interesting to note that the degree using actual locations is smaller than that using
estimated AP locations. This again is because the location of APs are often estimated



to be on the path of war driving or war walking, incorrectly placing them closer to one
another. We also computed the median of the differeneedian(E; — A;) whereE;
and A; are the degrees using estimated and actual AP locations, respectively,;for AP
The median for war driving was 2 and the median for driving-walking was 1.

4.7 Summary

We analyzed the effect of using AP locations estimated by war driving and war walking
compared to using actual locations. We present a summary of our findings and necessary
cautions.

Analysis Actual D [D+W
Effectiveness of war driving: War walking was more effective than

war driving at detecting APs.
Percentage of APs detected (%) 38 | 59

Average number of APs for each sddnwvar walking only) 6.1 |11.5*
AP location: APs often appear to be closer to roads, or to each other,
than in reality.
Median error in AP location estimatgmeter) 40.8| 31.6
Outdoor user location: Having accurate AP locations is important|to
estimate user position correctly.
Median error over four walkg¢meter) 19-34|46-6319-43
Median improvement using the actual AP locatig¥s 17-59 5-28
Indoor user location: The improvement obtained using actual AP |o-
cations was greater for indoor walks than outdoor walks.
Median error for four walk§meter) 7-11 15-30

Median improvement using the actual AP locati¢¥ 14-70Q
Inside of buildings: Using war driving and walking data poorly esti

mated whether a user is inside. =
Percentage of correct estimatig®o) 76 42

Signal range Using estimated AP locations, some APs appeared to

have shorter signal ranges than when actual locations were used
Median signal rangémeter) 91.4|93.2|74.9

AP interference: The computed degree using the actual locations
(35.0) was overestimated compared to the real interference (2.9). Using
the estimated AP locations made the degree even bigger.

Median degree difference using estimated and actual locations 2 1
Table 6. Summary. The column ‘Actual’ shows the values using the actual AP locations. ‘D’ and
‘D+W’ denote the results using the estimated location of APs discovered through driving and
driving-walking, respectively.

5 Conclusion

The original purpose for war driving was to discover Wi-Fi hotspots. As researchers
have started using war-driving traces for other purposes, it is important to better under-
stand errors in war-driving data and the effect of these errors on applications and net-
work characterizations. We collected war-driving traces on the Dartmouth college cam-
pus, estimated AP locations from these traces, and compared the estimated locations
against actual AP locations. We also analyzed the impact of using estimated locations
rather than actual locations on user-location tracking and AP-deployment characteri-
zations. We found that using accurate AP locations is critical in accurately estimating



user positions. We observed that estimated AP locations are often biased towards the
war-driving paths, which makes the maximum signal range of APs to appear shorter
and the interference among APs to appear more severe than in reality. We also found a
danger in making assumptions in analyzing traces; even with a conservative assumption
that an AP’s interference range is 50 m, we still overestimated interference by 12 times.
We hope that our study provides necessary cautions in using AP locations estimated
by war driving and helps researchers to take necessary steps to cope with errors in the
estimates.
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