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Pervasive applications such as digital memories or patient monitors collect a vast amount of

data. One key challenge in these systems is how to extract interesting or unusual information.

Because users cannot anticipate their future interests in the data when the data is stored, it

is hard to provide appropriate indexes. As location-tracking technologies, such as global positioning

system, have become ubiquitous, digital cameras or other pervasive systems record location

information along with the data. In this paper, we present an automatic approach to identify

unusual data using location information. Given the location information, our system identifies

unusual days, that is, days with unusual mobility patterns. We evaluated our detection system

using a real wireless trace, collected at wireless access points, and demonstrated its capabilities.

Using our system, we were able to identify days when mobility patterns changed and differentiate

days when a user followed a regular pattern from the rest. We also discovered general mobility

characteristics. For example, most users had one or more repeating mobility patterns, and

repeating mobility patterns did not depend on certain days of the week, except that weekends

were different from weekdays.
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1. INTRODUCTION

As the cost of sensors and storage devices goes down rapidly, ubiquitous applications

tend to capture and record a vast amount of data. As one example, digital memories

that record everyday life have been an active area of research [Czerwinski et al. 2006;

Lamming and Newman 1992]. Some healthcare applications monitor patients around

the clock [Wilson and Atkeson 2004]. One key challenge in these systems is how to

extract interesting or unusual information. When data is stored, it is hard to

anticipate how the data will be searched in the future. Thus, providing appropriate

indexes for data at the time when it is stored may not be feasible. Requiring users to

annotate the data is inconvenient or even infeasible in certain cases.

In this paper, we propose an automatic way to detect unusual days (i.e., days with

unusual mobility patterns) for individual users. In our detection system, we used the

locations that a user visited during each day to build mobility profiles dynamically

and to classify user days. For the evaluation, we used the location data of wireless
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users collected by wireless access points. Although we used wireless location data,

which can be collected only where wireless connectivity was available, we expect that

many pervasive devices (i.e., smart phones) are or will be equipped with a location-

tracking mechanism such as global positioning system (GPS). Our system allows users

to easily identify unusual days of their life, detect changes in their mobility patterns,

and understand their mobility characteristics. These capabilities will benefit numerous

pervasive systems that deal with a large amount of data.

Bush [1945] mentioned a forehead-mounted camera in his 1945 address; many

realizations of such a camera are now available, including GoPro and Looxcie. Because

these digital memories capture a large amount of data, it is hard to pinpoint interesting

data. Numerous researchers have worked to address this challenge. However, to the

best of our knowledge, we are the first in identifying unusual days by mobility data.

Haystack from MIT [Adar et al. 1999] observes how a user interacts with information

by recording what the user accesses. Haystack mostly focuses on information retrieval

within a user’s desktop environment, while our system focuses on help retrieving

unusual data from a user’s record of everyday life. Lamming and Newman [1992]

from Xerox proposed using the type of activities in which the user was engaged when

the data was stored to help information retrieval. However, they pointed out that

necessary activity-sensing technologies were largely unavailable at that time. Stuff

I’ve Seen from Microsoft [Dumais et al. 2003] provides a unified index of information

regardless of the type of information (e-mail, web page, document, etc.) to allow users

to easily find information they have seen before. Similar to Haystack, this system also

focuses on the computer desktop environment.

Another application domain that can benefit from our system is healthcare [Frost

and Smith 2003; Wilson and Atkeson 2004]. Healthcare monitoring systems can

continuously monitor patients. While some monitoring systems focus on generating

warnings, others are used for long-term diagnostic purposes. Since it is likely to be

inconvenient and inaccurate for patients to record their activities or behaviors, these

systems automatically record patients’ activities through various sensors. These systems

potentially record a large amount of data, and it thus becomes hard to retrieve or

pinpoint important information. One way to apply our system is to use the user’s

mobility patterns and extract significant changes in the patterns. These changes may

help identify causes of changes in a patient’s medical conditions. For example, changes

in sleeping patterns may indicate potential medical problems.

Our system may also help with mobility prediction [Song et al. 2006]. Predicting a

user’s mobility is important support for pervasive applications (such as a mobile Voice

over IP) and for some context-aware systems. Prediction systems often build a profile

using the history of user mobility patterns. If a user’s mobility pattern changes

significantly at a certain point in time, these predictors should dynamically adjust

profiles. Our system can detect these changes, which can then be reported to the

mobility predictors.

Section 2 describes wireless-network traces, and Section 3 presents our detection

system. Section 4 presents the evaluation results of our system using wireless traces.

Section 5 introduces a distillation application for digital memories that illustrates how

our system can be used to decide an appropriate distillation level. Section 6 summarizes
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our finding and suggests future work.

2. WIRELESS NETWORK TRACES

We used traces collected at wireless access points (APs) on the Dartmouth College

campus. These syslogtraces consisted of MAC addresses of wireless devices that were

associated with each access point, collected at the granularity of seconds. Along with

these traces, we used the geographical location of access points to consider the proximity

among access points.

We used the traces collected during three full months: April, May, and June 2004

[Kotz et al. 2005]. Based on Dartmouth’s academic calendar, the months of April and

May made up most of the spring term without any breaks. Spring term ended on

June 8 and summer term did not start until June 24.

On the Dartmouth campus, there were two types of wireless network devices: on-

and-off and always-on devices. The former mostly consisted of laptops, and the latter

consisted of Cisco Voice-Over-IP (VoIP) wireless mobile phones and Vocera devices,

which were a smaller version of VoIP wireless phones with speech-recognition

capability. In this study, we focused on the always-on devices to have a manageable

sized data set: 27,192 events were generated by Cisco phones and 343,355 events

were by Vocera phones. Table I shows the number of syslog events recorded for each

month. However, our mobility analysis can also be used for the on-and-off devices

without any modification.

Although a wireless network user can carry more than one device with multiple

wireless network cards or can carry different devices from day to day, we assume that

a MAC address represents one user of a wireless device. We define a user-day trace

to be a trace collected for one day (24 hours starting from 4 AM
1

) for a particular user.

During the three months, we observed 2,297 unique user-days and 124 unique users

as shown in Table II. Note that the number of user-days (2,297) is much smaller than

the potential maximum value (11,284) if all users were active every day during the

1

The campus-wide syslog traces roll over at 4 AM every day.

Table I. Syslog events.

Month Cisco Vocera 

April 8,693 71,713

May 11,440 114,899

June 7,059 156,743

Total 27,192 343,355

Table II. Number of user-days.

Cisco Vocera Total 

User-days 883 1,414 2,297

Users 29 95 124
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three months. This implies that most of these users did not regularly connect these

devices to the network.

3. TRACE ANALYSIS MECHANISM

In this section, we describe our mechanism for trace analysis. The goal of our approach

was to identify days that were different from the user’s regular mobility pattern. For

each day of the trace data, we computed the duration of stay at each location (e.g.,

building) the user visited during that day. If this duration trace matched any of the

existing profiles of that user, we assigned the class of that matching profile to this

user-day, and updated the profile with this user-day trace. Otherwise, we created a

new profile using this user-day trace as the initial values. We describe each step in

the following sections.

3.1 Aggregating Time

The density of APs on the Dartmouth College campus is high. The size of the campus

is approximately 1 km
2

, and we observed 503 APs in the three-month traces under

this study. Due to the high density, many of the APs were closely located and a

wireless user visiting the same location may have associated with different APs

during each visit. Even during one visit, a user’s device may have re-associated with

multiple available APs in sequence. (This phenomenon is an instance of the ping-pong

effect [Kim and Kotz 2007].) To discount these random events, we focused on the total

duration of a user’s visits at each AP during each day, instead of the duration of each

visit. We acknowledge that by using the total duration rather than a sequence of

durations, we omitted some information. However, this was inevitable due to noise in

the traces.

Figure 1 shows the cumulative distribution function (CDF) of the duration of stay

across all daily durations for three months. The solid line shows durations at APs. For

Figure 1. Cumulative distribution function (CDF) of daily durations at access points (APs) and at

buildings across all durations.
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the duration of APs, the 75th percentile is about 2-3 minutes. The percentage of short

durations is high because a user associates with numerous APs while moving. Another

reason is due to the ping-pong effect, which causes short-duration visits even when

users are stationary; a device may associate with the closest AP for the most time, but

briefly change to other nearby APs depending on the connectivity conditions

3.2 Aggregating Locations

As mentioned earlier, our syslog trace lists APs that each user visited. At a given

location, a user can be associated with one of many available APs, and may rapidly

switch APs even while stationary due to changes in the radio environment. Thus, we

believe that the set of APs that the user visited is too fine-grained to represent a

user’s location history. Instead of using the actual set of APs, we aggregated APs into

the buildings within which they were located. This aggregation effectively reduced the

number of user locations from 503 APs to 126 buildings. After aggregation, each user-

day trace contained a list of buildings with the total duration of stay at each building.

Yoon et al. !2006" also uses this aggregation step in developing a realistic mobility

model using the Dartmouth trace. As introduced earlier, Figure 1 shows the CDF

across all durations. The dashed line shows the durations at building granularity. The

75th percentile is about 5-6 minutes. Not surprisingly, the durations at the building

level are longer than those at the AP level.

3.3 Defining Regular Patterns Using Dynamic Profiling

After the aggregation steps, each user-day trace consists of a list of <building, duration>

pairs. Given this trace, we need to create a profile that represents a user’s regular

mobility pattern. The profile can be computed as the average of individual user days.

However, a user’s regular pattern may change over time. For example, on a college

campus, the mobility pattern is likely to change between academic terms and summer

vacation. Without extra knowledge such as an academic calendar, it may be hard to

generate an accurate profile for each time period.

In our approach, we did not use any extra knowledge. Instead, we dynamically

updated a profile of each user. We used an exponentially-weighted moving average

(EWMA) filter to update a user’s profile. The widely-used EWMA filter generates a

moving average, while smoothing out noise. At time t + 1, we updated each duration

at building b in the profile, e
t,b

, with the duration at the same building in the user-

day trace, d
t,b

, using an EWMA filter:

e
t+1,b

= αe
t,b

+ (1−α)d
t,b

(1)

where α is the gain of the filter. We used an α of 0.5. We left the exploration of

different values of α as future work.

Another interesting aspect of our approach is that we kept multiple profiles for each

user. If a new user-day trace matched an existing profile, we updated the profile with

the user-day trace. (We describe how we perform matching below.) If a new user-day

trace did not match any of the existing profiles of that user, then we started a new

profile. Each profile represented a class of that user’s mobility.
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3.4 Detecting Unusual Patterns Using a Pearson’s Test

Given a user profile and a new user-day trace, we needed to decide whether or not

the trace matched the profile. We considered several approaches. One popular test to

decide whether two data sets were different was the t-Test. However, because this

test compared the means between two distributions, it was not appropriate for our

problem because our data consisted of paired sets, each data point consisting of a

<building, duration> pair. Another popular test that compares two sets is the

Kolmogorov-Smirnov test [Massey 1951]. However, this test compares the cumulative

fraction plots of two sets and thus cannot be used for paired data lists.

The Pearson’s correlation test could be applied to our data set. To perform the

Pearson’s test, two vectors under consideration need to be of the same length. Because

we had 126 buildings, each user-day trace was converted to a vector of 126 elements

with each element representing the duration at the particular building. Although this

test assumes that the data follows a normal distribution, this assumption is not as

strict as the data set becomes large. (Since our data set is large, we applied this test

without checking whether or not our data in fact followed a normal distribution.) Given

two variables x and y, Pearson’s correlation coefficient is defined as:

(2)

where n is the number of data values. In our analysis, we only included the entries

of those buildings whose values were non-zero in at least one of two vectors: user-day

and profile vectors. Thus, n was defined as the maximum of the number of nonzero

durations in the user-day trace and that in the profile. More precisely, n was the size

of the set 
 
where d

i
 was the ith value of the user-day vector and p

i

was the ith value of the profile vector. Then, the degrees of freedom were defined as

n − 2. This value represented the number of independent data observations. We then

compared r with the critical value (from the probability table) for the given degree of

freedom using 95% confidence. If r exceeded the critical value, it meant that there was

a statistically significant relationship between the user-day and profile. If n was

either 1 or 2, we could not perform Pearson’s test since the critical values were

undefined for degrees of −1 and 0. For these undefined cases, we simply checked

whether or not the locations in the profile and those in user-day trace were the same,

without considering the duration.

4. EVALUATION

In this section, we present the results of our detection system using the Dartmouth

wireless trace as the location data. We list mobility observations we made from this

analysis, illustrate how our system classifies user-days, and summarize its capabilities.

4.1 Classification Result

In our trace, we have 124 VoIP users. While some users are regular users who were
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active most days, the rest did not use their device regularly. In our analysis, we focused

on the regular users, defined as users who connected to any access point more than

seven days during the three-month period. We found 64 users (52%) to be regular.

Figure 2 shows the CDF of the number of active days across 124 users.

We applied our classification mechanism to 64 regular users. For each user, our

system classified only the active user days. Recall that our system created a class

whenever a new user-day trace could not be classified into one of the existing classes.

We called any class that contained five or more user-days a baseclass. Figure 3 shows

the histogram of users with a different number of base classes. 71.9% of users had

only one base class during the three month period, while 23.4% had more than one

base class.

We first needed to understand the percentage of user days that could be considered

as regular versus unusual. Figure 4 shows the CDF across all user days. The x-axis

Figure 2. Cumulative distribution function (CDF) of users with the specific number of active days

across 124 users. 52% of users were active more than seven days.

Figure 3. Histogram of users with a different number of base classes.



78 Minkyong Kim and David Kotz

Journal of Computing Science and Engineering, Vol. 5, No. 1, March 2011

shows the class size in terms of days and the y-axis shows the cumulative percentage

of days that belong to a class with a specific size. First, using our threshold of 5 days

to be considered as a base class, we found that 34% (731 days) of user days were

considered to be unusual. If we reduced the threshold, the percentage of unusual days

would reduce. We chose the default threshold to be a little smaller than the cut off

for identifying the active users. Since we focused on the users who were active more

than 7 days, we chose our threshold to be 5 days. Second, the majority of unusual

days were a one-time event. In other words, the mobility pattern did not repeat.

Among all the unusual days, 72% belonged to a class of size 1 (day). 

We then considered how many of the active users had a regular mobility pattern.

To quantify this, we defined r
b
 as the ratio of the number of days that belonged to

base classes (d
b
) to the number of days that did not belong to base classes (d

u
). Then,

the percentage of dates that were considered to be unusual was computed as p
u

= d
u

/

(d
b

+ d
u
).

Table III shows r
b
 and pu. The first group (r

b
≥ 1.5) of users showed a regular mobility

pattern. Sixty percent or more of their days belonged to a base class, while the rest

of the days were considered to be unusual. The second group (0.5 ≤ rb < 1.5) included

25% of users. This group of users had one or more base classes, but roughly half of

the days do not belong to a base class. The third group of users either did not have

any base class or the majority of their days did not belong to a base class. The last

column of this table shows the average number of active days for the users in each

Figure 4. Cumulative distribution function (CDF) of classes with specific size (in terms of days)

across 2128 user days. The default threshold to be considered as a base class is 5 days.

Table III. Percentage of unusual days.

Group r p Number of users (%) Average active days

1 r ≥ 1.5 or d = 0 p ≤ 40% 40 (62.5) 36.2

2 0.5 ≤ r < 1.5 40% < p ≤ 67% 16 (25.0) 28.9

3 r < 0.5 67% <p ≤ 100% 8 (12.5) 27.1
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group. Group 1, whose days mostly belonged to a base class, had the largest number

of active days (36.2 days). The other two groups had a smaller number of active days

than that of Group 1, but they were still large enough to have a base class (5 days).

Figure 5 shows the class assignment across three months for several sample users

extracted from each of the three groups of Table III. The x-axis shows time and the

y-axis shows the class into which the mobility pattern of the particular day falls. Note

that the dates labeled on the x-axis (and drawn with grid lines) denote Sundays. User

A had only one base class (Class 0) and the majority of his or her days belonged to

this class. User B had two base classes (Class 0 and 1) and again a majority belonged

to these base classes. In User C’s case, roughly half belonged to base classes. A majority

of User D’s days did not belong to a base class.

Through this study, we also discovered several interesting mobility characteristics.

First, we did not observe any repeating pattern based on the day of the week. The

only weekly pattern that we observed was that most users were active during only the

week days and not active during weekends (User A and B in Figure 5). Second, a

change in mobility patterns coincided with an academic calendar. For a set of users,

their mobility pattern was regular during academic terms but became irregular

during summer vacation. For the first two months, these users had a base class and

Figure 5. Sample users. The x-axis is the calendar date and the y-axis is the class into which the

mobility pattern of the particular day falls. Note that the dates labeled on the x-axis (and drawn

with grid lines) denote Sundays.
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most of their days belonged to this base class. Then, toward the end of May, which

is when the term ended for that academic year at Dartmouth, these users’ days did

not belong to any base class (User D). For another set of users, their mobility pattern

shifted from one base class to another towards the end of May (User C). Third, while

most users had one base class, some users had multiple base classes, often switching

back and forth among them.

The mobility characteristics are important to understand for pervasive application

developers during their design and testing. For example, to test new software in a

simulation environment, they need to know how many users follow certain characteristics.

Table IV shows the number of users that followed the mobility characteristics described

above. Note that the first observation applied to most users and thus we did not include

it in this table.

In summary, we identified unusual days using Pearson’s test. If r did not exceed the

critical value, then the corresponding day was considered to be different from usual

days (which belonged to one of base classes). However, for those users who did not

show any regular mobility patterns, we could not identify any unusual days since

there were no regular or usual days.

4.2 Users on the Map

In the previous section, we identified many interesting mobility characteristics of

individual users using our system. In this section, we look into some unusual days

that we identified in the previous section to deepen our understanding of the findings.

We first considered five active days of User A in detail: 5/28, 6/1, 6/2, 6/3, and 6/4.

Among these five days, only 6/2 was identified as a different class (See the graph in

Figure 5). Table V depicts the locations of buildings (on an invisible campus map) that

User A visited on each day. Each circle shows a building and the filled circles show

Table V. Buildings User A visited during five days. Circles denote the location of all the buildings

that the user visited on that day. The black circles represent those buildings where the user stayed

longer than 30 minutes.

 

Table IV. Additional mobility characteristics.

Characteristic Number of users (%)

Switch from one base class to irregular 6 (9.4) 

Switch from one base class to another 7 (10.9) 

Switch among multiple base classes 8 (12.5) 
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those buildings where the user stayed longer than 30 minutes. Note that our system

used both the location and time information, while this figure shows only the location

without the exact duration of stays. For a better understanding of why 6/2 was classified

into a different class, we also showed the duration of stay at buildings (where the user

stayed for more than 30 minutes total) in Table VI. From Table VI, we can clearly see

that User A spent much more time at Building 1 on those four days (in Class 0) while

she did not visit Building 1 and stayed mostly in Building 3 on 6/2 (in Class 5).

Another case that we considered was class transition. User B in Figure 5 shows a

class transition during the week of 5/23. Days up to 5/26 belong to Class 0 and the

days after that belong to Class 1. Table VII shows the buildings that User B visited

in five days: 5/24, 5/25, 5/26, 5/27, and 5/28. The circles show the location of the

buildings and filled circles show the buildings where users spent more than 20

minutes. Table VIII shows the duration of stay at the two buildings. It is clear how

the days are classified into two different classes. User B stayed at Building 5 in the

beginning of the trace and then stayed mostly in Building 6.

In summary, as illustrated with sample users, we could easily do the following

using our system: 

Table VI. User A: Total duration of stay at each building (in minutes). The table shows only the

buildings where User A stayed longer than 30 minutes in any of the five days.

Dates 5/28 6/1 6/2 6/3 6/4 

Building 1 53 125 12 91 100 

Building 2 13 140 0 0 0 

Building 3 0 0 183 99 1 

Building 4 0 2 3 36 3 

Class 0 0 5 0 0 

Table VII. Buildings User B visited in five days. Circles denote the location of buildings that the

user visited on that day. The black circles represent those buildings where the user stayed longer

than 20 minutes.

Table VIII. User B: Total duration of stay at each building (in minutes). The table shows only those

buildings where User B stayed longer than 20 minutes in any of the five days.

Dates 5/24 5/25 5/26 5/27 5/28 

Building 5 364 28 21 0 0 

Building 6 7 0 0 31 86 

Class 0 0 0 1 1 
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Identify days when mobility patterns change. 

Identify days where the pattern looks like that of many other days, i.e., a typical day.

Identify days where the pattern does not look like (many) other days, i.e., an

unusual day.

Discover the general characteristics of human mobility.

5. SAMPLE APPLICATION SCENARIO

In this section, we introduce a sample pervasive application and how our mechanism

interacts with this application.

Digital memories or diaries often use a body-mounted camera to capture photos or

movie streams. Because this data can quickly accumulate, it is important to distill or

compress the data. One simple way to distill the data would be to filter out data

frames or photos at fixed intervals. However, this static method of distillation would

lose many details that the user may later find interesting. Perhaps distillation should

be done differently if a certain day was special or interesting. For many people whose

jobs did not vary much from day to day, the system probably would not record many

new things every day. A typical day for such people would be images of home, the

route to work, and the office. However, when a person takes a vacation and travels,

the camera is likely to capture many new images. Thus, the distillation system should

capture these special days and apply different filters to the data according to type of

days that the data was gathered.

We now consider this application in more detail and how it interacts with our system.

The head-mounted camera captures images during the day. Locations of the user are

also recorded. At the end of the day, the user backs up the data to a storage server.

For a fixed time period, the server keeps the original data. When the data is about

to expire, the server needs to decide how to distill the data. To make the decision, the

server sends location information to our system, and our system determines the

significance of that day. The significance level may be either determined using a

system default (e.g., highest level for the first day of a class) or predefined by the user.

Our system returns the significance level to the server and the distillation server

compresses data according to the significance level.

Although our current system detects unusual days solely based on mobility patterns,

we recognize that we ultimately need to combine other contextual information to

detect unusual days. For example, an office worker may spend the usual amount of

time in the usual places, but something about their work that day (such as the people

they met, conversations they had, or tasks they performed) may have been unusual.

We can adapt other sensor-based systems to collect different categories of information.

For example, activity recognition systems [Consolvo et al. 2008, Choudhury et al.

2008] may provide a series of activity data, and this data can be put into our detection

system to identify unusual activities. Using both activities and mobility patterns, we

can identify unusual days that may be more meaningful to users.

6. CONCLUSIONS

Numerous pervasive applications such as digital memories collect a large amount of

data now that sensing devices and storage are both cheap and readily available. One
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key challenge is to identify and retrieve interesting data. In this paper, we presented

a system that automatically identified unusual days using location information. We

evaluated our detection system using real wireless-network traces collected on the

Dartmouth campus. Our system identified regular mobility patterns, detected changes

in the patterns, identified unusual days, and also extracted general characteristics of

human mobility. Although we evaluated our system using wireless-network traces, we

expect that other types of location information would also be easy to collect using

devices such as GPS.

In the future, we would like to develop a distillation application for digital memories

as described in Section 5, and use our system for indexing and adaptive distillation.

We would then collect image data along with location information and use our system

to effectively manage the vast amount of image data.
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