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Abstract Understanding user mobility and its effect

on access points (APs) is important in designing loca-

tion-aware systems and wireless networks. Although

various studies of wireless networks have provided

useful insights, it is hard to apply them to other situa-

tions. Here we present a general methodology for

extracting mobility information from wireless network

traces, and for classifying mobile users and APs. We

used the Fourier transform to reveal important periods

and chose the two strongest periods to serve as

parameters to a classification system based on Bayes’

theory. Analysis of 1-month traces shows that while a

daily pattern is common among both users and APs, a

weekly pattern is common only for APs. Analysis of

1-year traces revealed that both user mobility and AP

popularity depend on the academic calendar. By

plotting the classes of APs on our campus map, we

discovered that their periodic behavior depends on

their proximity to other APs.

Keywords Wireless network � User mobility �
Popularity of access points � Periodicity

1 Introduction

Wireless networks have become popular and are get-

ting more attention as a way to provide constant con-

nectivity over a large area in cities and as an

inexpensive way to provide connectivity to rural areas.

The growing popularity of wireless networks encour-

ages the development of new applications, including

those that require quality of service (QoS) guarantees.

To provide QoS, it is often useful to predict user

mobility. We also need simulators of wireless network

environments to test these new applications and these

simulators require user mobility models. Thus, we aim

to understand mobility of mobile devices in Wi–Fi

networks.

As more mature wireless networks become avail-

able, several studies of wireless networks have been

published, including studies of a campus [7, 8, 11], a

corporate environment, and a metropolitan area.

Henderson et al. [7] analyzed the characteristics of

wireless network usage on the Dartmouth campus

using traces collected during the Fall 2003 and Winter

2004 terms. Balazinska and Castro [2] traced 1,366

corporate users on 117 APs over 4 weeks. Tang and

Baker [12] studied a 7-week trace of the Metricom

metropolitan-area packet radio wireless network,

containing 24,773 mobile radios. Although these stud-

ies help us to understand characteristics of different

network environments and user groups, it is often dif-

ficult to apply the findings of these studies to other

applications. So we set out to develop methods to ex-

tract mobility characteristics from network traces,

allowing anyone to obtain model parameters from

traces of their network (or a network similar to the

desired network).

We introduce a method to characterize real wireless

network traces and classify different mobile users

based on their mobility. We transform our traces using

the discrete Fourier transform (DFT) to make them
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independent of the particular time that traces were

gathered. This transformation exposes periodicity in

traces.

We then use AutoClass [5], an unsupervised classifi-

cation tool based on Bayes’ theory. Classification is

important because user mobility differs widely from user

to user [2]. Thus, it is difficult to describe diverse user

mobility patterns with a single model. Classification

breaks down this complex problem into several simpler

ones, by dividing users into groups that have common

characteristics and thus might be modeled similarly.

We then focus on the behavior of access points (APs).

We apply our method to extract periodicity from wire-

less network traces and to classify APs. Understanding

the behavior of APs is important for many applications,

such as traffic engineering for APs and resource provi-

sioning for QoS-sensitive applications.

We first use a 1-month trace to understand short-

term periodicities in user mobility and access-point

popularity, and then analyze a 1-year trace to discover

long-term seasonal effects. Both short-term and long-

term effects are essential components of modeling. For

example, a short-term effect would be a drop in

mobility during the night, while a long-term effect

would be an increase in mobility during certain aca-

demic terms on university or college campuses.

An important benefit of using the DFT is that it is

easy to compute the inverse DFT to obtain the time

series. After clustering instances based on the infor-

mation extracted from DFT, we can construct a se-

quence of numbers corresponding to the power

spectrum representative of each class. We can then use

an inverse DFT to obtain the time series that repre-

sents that class. This method is also used by Paxson [9]

to synthesize approximate self-similar networks. We

leave this modeling process as future work.

2 Methodology

In this section, we describe our traces and the param-

eters that we have chosen to represent user mobility

and behavior of APs. We then describe how we con-

verted our traces from the time domain to the fre-

quency domain using the Fourier transform and how

we classified users and APs using AutoClass.

2.1 Collecting traces

At the Dartmouth College campus-wide wireless net-

work, we have been collecting syslog records since

2001, when 476 Cisco APs were installed. The APs

record client events (such as authenticating, deau-

thenticating, associating, disassociating, and roaming)

by sending syslog messages to a central server, where

the logs are timestamped with 1 s granularity. As of

December 2004, most of the APs on our campus were

Cisco 802.11b APs. Although they were in the process

of being replaced by Aruba APs, we focused on Cisco

APs because they were still the dominant set of APs

and covered most of the campus during the time when

our traces were collected.

2.2 Selecting parameters

To cluster users or APs we must choose an appropriate

parameter. In particular, we seek a simple measure of

users’ mobility within a time interval.

2.2.1 Diameter as mobility measure

One limitation of our study is that we do not have the

exact geographical location of a user. We do know the

location of each AP on our campus and the APs where

a user is associated over time. Thus, we work around

this limitation and approximate a user’s location using

the location of the AP with which the user is associ-

ated. Because many areas are covered by more than

one AP, some clients change association from an AP to

another even when they do not physically move.

Sometimes a client associates repeatedly with a fixed

set of APs, a phenomenon we call the ping–pong effect.

The ping–pong effect cannot happen across two APs

that are apart farther than a certain distance because

APs have limited coverage, but this distance is often

hard to pinpoint. The Cisco specification states that the

indoor range at 11 Mbps is 39.6 m and the outdoor

range is 244 m. Obviously, a ping–pong effect is ex-

tremely unlikely between two APs that are more than

488 m apart, but choosing this value as the threshold is

too aggressive, filtering out too many user movements.

Because different APs are configured differently and

located in different environments, it is hard to define a

precise distance threshold to decide whether a change

between two APs is due to the ping–pong effect or not.

Although Henderson [7] defined the limit as 50 m, in

our traces we found that some clients ping–pong be-

tween two APs more than 50 m apart. Thus, we do not

use a threshold to filter out ping–pong effects, but

choose a parameter that is less sensitive to them.

Our goal is to classify wireless network users based

on their mobility patterns. Our traces list events at a

particular AP with a particular mobile user. We first

gathered the events associated with each user. Al-

though the events are recorded with 1 s granularity, we

aggregated them into one value for each hour. We
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considered several alternatives to represent this value.

Because of the ping–pong effect, the total distance

traveled (the sum of the distance between APs visited,

in sequence) often does not reflect user mobility. A

user may appear to travel a long distance if he expe-

riences many ping–pong effects even though he did not

move at all. A better measure is the diameter, defined

as the maximum Euclidean distance (i.e., the straight

line distance between two points) between any two

APs visited during a fixed time period [7]. Although we

still cannot tell whether a diameter is due to real user

movements or ping–pong effects when it is short, we

can at least be confident that it is caused by real

movements when a diameter is longer than a certain

distance.

2.2.2 Number of users to describe APs

For APs, we used the same set of traces, but gathered

the events associated with each AP. Then, we counted

the number of unique users visiting each AP during

each hour. By counting the number of unique users

instead of the number of user visits, we removed noise

caused by ping–pong effects. This measure gives a

broad sense of the population’s mobility about campus

from hour to hour.

2.3 Discovering periodic events

For each user, we created a vector that represents the

user mobility (i.e., diameter) of each hour during the

length of traces. Our goal is to classify users according

to their mobility patterns. Finding similar patterns by

comparing these diameter vectors directly is not

trivial. For example, the same mobility patterns may

appear with more than one user, but they may be

shifted in time or scaled. Also, we are not interested

in discovering the exact value of diameter at a

physical time.

To preserve the diameter but discount for shifts in

absolute time, we used the discrete Fourier transform

(DFT) to transfer our parameters from the time do-

main to the frequency domain. Since the Fourier

transform is well known, we briefly describe it here,

borrowing a description from Numerical Recipes in C

[10]. Suppose that we have a function with N sampled

values:

hk � hðtkÞ; tk � kD; k ¼ 0; 1; 2; . . . ;N � 1: ð1Þ

Here D denotes the sampling period; it is 1 h for our

case. The DFT estimates values only at the discrete

frequencies:

fn �
n

ND
; n ¼ �N=2;�ðN=2� 1Þ; . . . ;N=2� 1;N=2

ð2Þ

where the extreme values of n correspond to the lower

and upper limits of the Nyquist critical frequency

range. Then, the DFT of N points hk is defined as

following:

Hn �
XN�1

k¼0

hk e2pifntk ¼
XN�1

k¼0

hk e2pikn=N : ð3Þ

Agrawal [1] has shown that a few Fourier coeffi-

cients are adequate for classifying Euclidean distances.

He chose the first two strong, low frequency signals.

Based on this study, we chose the two strongest fre-

quency (or period) signals as our parameters for our

classification of user mobility.

2.4 Clustering

To classify user mobility patterns, we used AutoClass

[5], a classification system based on Bayes’ theory. A

key advantage of this system is that it does not need to

specify the classes beforehand, allowing unsupervised

classification. We had, and needed, few preconceptions

about how our mobility data should be classified.

A Bayesian classification model consists of T, which

denotes the abstract mathematical form of the model,

and V
!
; which denotes the set of parameter values for

the variables appearing in T. AutoClass takes fixed-

size, ordered vectors of attribute values as input. Given

a set of data X, AutoClass seeks maximum posterior

parameter values V
!

and the most probable T irre-

spective of V
!
: AutoClass performs two levels of

search: parameter-level search and model-level search.

First, for any fixed T (specifying the number of classes

and their class models), AutoClass searches the space

of allowed parameter values for the maximally proba-

ble V
!
: Second, given the parameter values, AutoClass

performs the model-level search involving the number

of classes J and alternate class models Tj. It searches

over the number of classes with a single probability

density function Tj common to all classes. It then re-

peats this process with different Tj from class to class.

3 Short-term effects and classification

In this section, we analyze periodicities in 4 week1

trace and present the result of classification generated

1 We discuss the reason that we used a trace of 4 weeks instead
of 1 month in Sect. 3.4.
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by AutoClass. To study the short-term effects, we focus

on 4 weeks of traces collected from October 3 to

October 30, 2004. During these 4 weeks, 7,213 devices

(i.e., MAC addresses) visited 469 APs. In the following

discussion, we refer to a MAC address as a user, al-

though a user may own more than one device with a

wireless network interface. We expect that most of the

devices are laptops, based on the previous study over

the traces collected at Dartmouth [7]. The 4-week trace

contains roughly 4.5 million syslog events, of which 1.9

million events represent devices associating or reasso-

ciating with APs.

3.1 Filtering traces

We found it was necessary to filter the traces to select

the most meaningful data.

3.1.1 Mobility

In our traces, many users do not move at all, and many

others appear in the traces only for a short duration.

Because we want to find meaningful patterns of user

mobility, we need to remove these stationary and

transient users. Figure 1a shows the hourly diameter of

all 7,213 users. For a given user and a given hour,

‘‘white’’ denotes a diameter of zero, while ‘‘black’’

represents a diameter greater than zero. Note that

users are sorted based on the time when they first

connected to the network. This figure shows that there

were many users who joined the network several days

after the beginning of our trace. There are also many

users who rarely moved. We eliminated any user who

did not move or did not connect to the wireless net-

work for a period of 3 days or longer. We chose 3 days

based on the assumption that regular mobile users are

unlikely to stay in one place for more than 3 days.

They may stay in one place for the weekend; thus using

2 days as the filtering limit may be too aggressive.

After the filtering, we ended up with 360 users. Fig-

ure 1b shows the hourly diameter of these 360 users.

In analyzing the periodicity in mobility, we do not

want to consider stationary users. Thus, we divided the

360 users into two groups: mobile and stationary. The

users whose hourly diameter never exceeded 100 m

belong to the stationary set, while the rest of the users

belong to the mobile set. If a user was mobile, it is very

likely that she had at least 1-h diameter value bigger

than 100 m since it only takes a little over 1 min to

walk that distance (with the average human-walking

speed of 3 miles/h). Among the 360 users, 246 users

(68%) belong to the mobile set. We focus on these

mobile users in analyzing the periodicities.

3.1.2 APs

There are many APs on our campus that are not ac-

tively used. We divided the 469 APs into two groups:

active and inactive. The APs that were never visited by

more than 50 users per hour belong to the inactive set,

while the rest of APs belong to the active set. Among

469, 216 APs (46%) belong to the active set. We focus

on these actively used APs in our analysis.

3.2 User mobility

We first present the result of user mobility patterns

converted from the time domain to the frequency do-

main and then show the classification of mobile users.

3.2.1 Mobility patterns

To illustrate our method, we chose one typical user

from our trace. The diameters of this user in the time

domain and frequency domain are shown in Figs. 2

and 3, respectively.

Fig. 1 This figure shows the
hourly diameter of individual
users over the 4 week trace.
‘‘White’’ denotes a diameter
of zero, while ‘‘black’’
represents a diameter greater
than zero. There are total of
7,213 users, among which 360
users do not have any 3-days
gaps
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Figure 2 shows the diameter of each hour of one

user and the number of unique APs visited by the user

during each hour over 4 weeks. The X-axis labels

indicate the dates for Sundays, and the Y-axis shows

the diameter and the number of APs. This user often

had a diameter of 40 m. By looking into the trace, we

found that the user was visiting a fixed set of APs

repeatedly due to the ping–pong effect. While shorter

diameters are due to ping–pong effects, longer ones

represent real movements.

Note that the number of unique APs does not nec-

essarily correlate with the diameter: although the

number of APs may indicate mobility, we cannot dis-

tinguish whether an increase in this number is due to

real movements or due to the ping–pong effect. Even

when this user associated with up to four APs, the

diameter was still around 40 m. On the other hand, in

the third largest peak where the user moved around

240 m, he only visited two unique APs. Thus, the

number of APs visited by the user does not accurately

describe mobility.

Figure 3 shows the DFT of this users’ vector of

diameters. The two most significant periods are 24 and

224. This implies that user mobility patterns are likely

to repeat in these periods.

We transformed all of our users’ diameter vectors

using the DFT and recorded the two strongest periods.

Figure 4 shows the cumulative fraction of users with

different periods as their first and second strongest

periods. For the strongest period, the biggest jump is

approximately around 24 h. The distribution also has

smaller jumps at the following hours: 84 (3 days and

12 h), 168 (1 week), 224 (9 days and 8 h), and 336

(2 weeks). Note that by using the DFT, we can observe

a jump only at a period that is an integer fraction of the

input length (672). We were not surprised to see users

with 1 day, 1 week, or 2 weeks as their primary peri-

ods. But, it is interesting to observe more users with 3-

days-and-12-h than 4 days. The users with the period of

9-days-and-8-h instead of 9 or 10 days may be an

artifact from using the DFT because neither the period

of 9 nor 10 days is an integer fraction of 4 weeks while

that of 9-days-and-8-h is an integer fraction; it is

nonetheless interesting to observe users with this per-

iod as their primary or secondary period.

3.2.2 Classification

We used the two strongest periods as our first two

elements of three-element input vectors to AutoClass.
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In addition to these two periods that we gathered from

the DFT, we also measured the maximum hourly

diameter (dmax) observed over our trace for each user.

As described in Sect. 3.1, we focus on the mobile set of

users whose dmax was greater than or equal to 100 m.

AutoClass used these three parameters to classify

the mobile set of users into seven classes. Table 1

shows the number of instances that fell into each class

and the parameters that most influenced class assign-

ment. The table also shows the mean and standard

deviation of parameters of members within each class.

Although parameters with smaller coefficient of vari-

ation (CV) often play an important role in class

assignment, this is not necessarily true. It is how much

the parameter value of an instance is different from

those of others that determines whether the parameter

plays a critical role in class assignment. Note that our

third parameter dmax never played the major role in

assigning instances to classes.

Figure 5 shows how classes are clustered in three

dimensions in different perspectives for a better view.

There are many users tightly clustered around 1 day as

their primary period. At the same time, there are many

others for which 1 day was not their strong period. The

first group of people with a strong 1-day period make

up classes 1, 2, and 5, while the second group of people

make up the rest of classes.

First, we considered the group of users that have a

strong 1-day period. This group of people are divided

into three classes based on the secondary period;

classes 1, 2, and 5 correspond to small, mid-range, and

big secondary periods as shown in Fig. 5c. Class 1

represents users who have 1 day as their strongest

period and a small secondary period. Students who

have regular classes may exhibit this kind of mobility

behavior. The average second period for class 2 is close

to 2 days. The average for class 5 is close to 11 days,

but this value is misleading; secondary periods of this

class are bimodal around 1 and 2 weeks. Thus, class 5

can be described as a cluster of users with 1 day and

either 1 or 2 weeks as their strong periods. Note that

mobile users with 1 day as their strongest period and a

small secondary period are most prevalent—Class 1 is

the biggest class.

Second, we looked into the group of users whose

primary period is not 1 day. These users are divided

into four classes. As shown in Fig. 5d, classes 3, 0, 4,

and 6 have smallest to biggest secondary periods,

respectively. Class 6 consists of users with 9-days-and-

8-h as the secondary period and the very small primary

periods. It is interesting to note that most of the users

whose primary period is not 1 day have their secondary

period close to 1 day—Class 0 is the biggest class

among these four classes.

3.3 Access points

We used the same method to classify APs based on

how many visitors they had each hour, and particularly

the periodicity of that metric.

3.3.1 Periodicity

Figure 6 shows the cumulative distribution of the

number of APs with primary and secondary periods:

85% of APs had their primary period at 1 day (24 h);

25% of APs had their secondary period at 1 week

(168 h). Compared to the user mobility (see Fig. 4),

more APs have their primary period at 1 day and the

secondary period at 1 week.

3.3.2 Classification

As input to AutoClass, we used three parameters: the

period at which power is maximum, the period at

which the power is second to maximum, and the

maximum number of users that an AP serviced during

any hour, umax.

Table 2 shows the number of cases that resulted in

each class. AutoClass classified the input cases into four

Table 1 Classes of user mobility

Class Instances (No) Instances (%) Key parameter Period 1 (h) Period 2 (h) Diameter (m)

Mean Std CV Mean Std CV Mean Std CV

0 74 30.1 p2 43.1 67.8 157.3 19.4 7.8 40.2 279.1 94.1 6.0
1 75 30.5 p1 23.7 3.8 16.0 5.8 3.3 56.9 312.6 101.0 5.8
2 42 17.1 p1 23.8 4.6 19.3 41.0 34.7 84.6 184.9 90.2 8.7
3 23 9.2 p1 3.0 0.7 23.3 3.8 1.9 50.0 324.7 113.4 6.3
4 13 5.3 p2 103.9 81.7 78.6 118.2 55.9 47.3 228.7 88.5 6.9
5 15 6.1 p2 23.0 3.4 14.8 264.7 80.4 30.4 318.6 105.7 5.9
6 4 1.7 p2 5.6 0.7 12.5 209.7 28.0 13.4 255.1 118.9 8.4

Mean, standard deviation and coefficient of variation (%) of each parameter are listed. Period is in hours and diameter is in meters
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classes. The last parameter (umax) did not make any

difference in classifying the input cases. Thus, we did

not include it in the table. The determining parameter

for the first three classes was the secondary period (p2).

This is because the primary period (p1) was equal to

24 h for most of the cases, and therefore did not play a

critical role in determining to which class a case belongs.

Figure 7 shows each instance in three dimensions in

two different perspectives. Because umax did not play a

major role for classification, we did not include it in this

graph. Instead, we included the probability of an in-

stance being in a particular class as the third axis.

AutoClass computes this probability, for each instance,

which indicates the likelihood that an instance is a

member of a class. If this probability is one, that in-

stance is a strong member of the class. Not surprisingly,

the probability drops for the instances in the regions

where different classes meet.
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Figure 7 shows that most APs had their primary

period at 1 day. It is also clear that classes 0, 1, and 2

had distinct secondary periods. Note that among these

three classes, class 0 had the most instances; this means

that APs with 1 day as their primary period and around

1 week as their secondary period were the dominant

category. Class 3’s primary period is much bigger than

1 day; its secondary period is also big.

Figure 8 shows the location of the APs on our

campus. Many of the Cisco APs on our campus have

recently been replaced by Aruba APs. Because we

focused only on Cisco APs, Aruba APs were not in-

cluded in the map. Out of 469 Cisco APs, we did not

know the locations of ten APs. Thus, only 459 APs are

marked. Because we did not classify the APs who

never had more than 50 users per hour, only 216 APs

were classified. Note that APs within a small geo-

graphical location, even within the same building, often

had different patterns of behavior. Thus, characterizing

APs based on their geographical locations or type of

building may be erroneous.

3.4 Lessons learned

In the Fourier transform, it is important to truncate

data so that the input data is a multiple of the period of

the signal. Because we expected some weekly period-

icity, we used a 4-week trace instead of 1 month; we

truncated the data to be multiple of 1 week (i.e., 168 h).

For access points, we tried both a 4-week trace and 1-

month trace. With the 4-week trace, an AP had 1 day as

the strongest period and 1 week as the second. When

we used the 1 month trace, we got the same value of

1 day for the first maximum, but got 1 week and 12 h

for the second maximum instead of exactly 1 week.

Visualizing clustered data is important to under-

stand results. Visualization helped understanding how

Table 2 Classes of access points

Class Instances (No) Instances (%) Key parameter Period 1 (h) Period 2 (h)

Mean Std CV Mean Std CV

0 99 45.8 p2 23.8 1.7 7.1 158.6 67.9 42.8
1 68 31.5 p2 24.0 0.0 0 11.6 2.3 19.8
2 28 13.0 p2 25.4 10.4 40.9 28.3 6.9 24.4
3 21 9.7 p1 165.1 97.4 59.0 90.0 97.7 108.6
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classes are divided and how each parameter contrib-

utes in distinguishing instances. But, it was not trivial to

find the ‘‘right’’ way to present clustered data. We

expect it will even be harder if more input parameters

are used for classification.

4 Seasonal effects

To understand long-term seasonal effects, we used a

longer trace, lasting a year, from 2 November 2003 to

30 October 2004. We chose 364 days instead of

365 days to make the length of our trace a multiple of a

week. Our trace consists of syslog records collected at

both Cisco and Aruba APs. We observed 17,522 MAC

addresses visiting 780 access points (APs). Note that

the total number of APs does not represent the num-

ber of active APs at a certain time. Because Cisco APs

on the campus were replaced by Aruba APs during this

time period, the number of APs observed during the

year (780) is probably higher than the number of active

APs at any given time.

On the Dartmouth campus, there are two types of

always-on mobile devices: Cisco VoIP mobile phones

and Vocera communicators. While laptops tend to be

turned off while carried from place to place, these al-

ways-on devices are connected to the network even

when users are moving. Thus, we can get a relatively

accurate picture of how much these users move. These

always-on VoIP devices constitute 1% of all devices;

we observed activities of 39 VoIP phones and 128

Vocera communicators in our 1-year trace.

We applied the same method that we used for the 1-

month trace to understand the cycles in the 1-year

trace. To analyze user mobility, we computed the

hourly diameter for each user. To analyze AP popu-

larity, we counted the number of unique users visiting

each AP during each hour. For each user or AP, we

had a 8,736-entry vector, each entry representing the

value for that hour. We then used the DFT to discover

seasonal periodicities. From the DFT result, we chose

the five strongest periods.

Analyzing periodicities of random patterns makes

little sense. Thus, we identified users and APs with

random behaviors using the randomness test in

Sect. 4.1. We then explored seasonal effects in user

mobility in Sect. 4.2 and analyzed the popularity of

APs in Section 4.3.

4.1 Randomness

To test whether a series can be considered random, we

used the autocorrelation test [3]. This test relies on

notion that a random series should not be similar to its

shifted versions. We computed autocorrelation of ser-

ies (vectors) and analyzed the plot of the autocorrela-

tion function as a function of lag, called the correlgram.

For a random series, lagged values are uncorrelated

and thus rk @ 0, where rk is the autocorrelation coeffi-

cient at lag k. We decided that a series was random if

all rk were within the 95% confidence limits, except for

k = 0.

Table 3 shows the result of this randomness test. Of

the total 17,522 users, 31.3% never visited more than

one AP during an hour. Among the 12,040 users who

ever moved during the year, 75.9% of users show non-

random behavior. 97.4% of all APs show non-random

patterns. In analyzing periodicities, we focused on

these non-random users and APs.

4.2 User mobility

Figure 9 shows an example of the hourly diameter

computed for a typical user. The X-axis shows the

calendar month and the Y-axis shows the diameter in a

log scale. The black horizontal bars at the bottom

graph show the time when the school was in session.

We can see that this user’s movement closely matches

the academic calendar, except for the Summer term.

This user was probably away from the campus during

the summer. From the device’s MAC address, we know

that the device is not an always-on device; it is likely to

be a laptop since most devices on the Dartmouth

campus are laptops [7]. We expect that movements of

other laptop users follow similar patterns.

4.2.1 Maximum of hourly diameter

To get a rough idea of users’ movement patterns, we

considered the maximum hourly diameter over the

year for each user. Figure 10 shows the cumulative

fraction of the maximum diameter over all users. Of all

devices, 31.3% had a maximum diameter of zero; these

devices never associated with more than one AP within

each hour. Another interesting observation is that

there is a knee towards 244 m, which is the outdoor

signal range for Cisco APs. The number of devices

increases slowly towards this value because devices are

not affected by the ping–pong effect after this limit.

Table 3 Randomness test result

Total Mobile Non-random Random

Users 17,522 12,040 9,140 (75.9%) 2,900
APs 780 – 760 (97.4%) 20
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The median of the maximum diameters over all devices

is 46.5 m.

Figure 10 shows the the cumulative fraction of

maximum diameter over Cisco VoIP phones and Vo-

cera communicators. Always-on devices have bigger

maximum diameters than the diameters of the whole

population of wireless devices. The medians of the

maximum diameters for VoIP phones and Vocera

communicators are 539.5 and 538.9 m, respectively.

One interesting observation is that the line for Vocera

communicators shows a plateau approximately from 50

to 260 m. This indicates that Vocera devices are di-

vided into two groups: stationary and mobile. Most

stationary Vocera devices have a diameter close to

zero, while some stationary devices have a diameter

greater than zero due to the ping–pong effect, which

causes devices to associate with more than one AP

even when they are not moving.

To understand whether user mobility changes across

different academic terms, we divided our trace into

four academic terms based on the Dartmouth’s aca-

demic calendar. Figure 11a shows the cumulative

fraction of the maximum diameter over all users for

each academic term. Users are most mobile in the Fall

term; Spring and Winter terms follow in order. Many

users are not mobile during the Summer term because

they are not on the campus.

We removed the users who were not on the campus

for certain terms, as well as those users who never

visited more than one AP per hour. We computed the

sum of hourly diameter for each term and considered

only the users whose sum is bigger than zero for all

four terms; this reduced the number of user from

17,522 to 1,423. We considered a different metric, the

average diameter over all hours with a non-zero

diameter; this average gives a sense of how much

people move when they do move. Figure 11b shows the

cumulative fraction of this average diameter over 1,423

users. Users’ mobility increased from Winter to Fall,

Fall to Spring, and Spring to Summer. This difference

may be due to different weather conditions, though

there are many possible explanations.

4.2.2 Periodicities

We used the DFT to discover seasonal periodicities.

We first considered the DFT result of our sample user

from Fig. 9. This user has peaks (not shown)—in order

from the strongest to the weakest—at 1 day, 3, 6, 12

and 2 months. Note that this user’s secondary period is

3 months, which corresponds to Dartmouth’s quarter

calendar.

Figure 12a shows the cumulative fraction of each

peak period over 9,140 users. Note that we excluded

users who never moved during the year and whose

behavior is random. Peaks 1 through 5 are the five

strongest periods in descending order of strength. All

five peaks have many users with the period of 24 h,

while the period of 168 h (1 week) is negligible. It is

interesting to note that the lines are roughly in order,
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with the strongest period at the bottom. This is partly

because stronger peaks have more users around 24 h

while weaker ones have diverse periods as their values.

This diversity makes slopes around 24 h steeper for

weaker peaks. Also, note that Peak 1, 2, 3, 4 and 5 have

big jumps at 12, 6, 4, 3 and 2.5 months, respectively.

We currently do not have an explanation why five peak

periods are in a descending order with these specific

values.

To see clearly significant periods with a large num-

ber of users, we aggregated data of the five peaks.

Figure 12b shows the cumulative fraction of strong

periods over users. The X-axis shows the period in

hours in a log scale. ‘‘All’’ corresponds to aggregated

values from Peaks 1 to 5. We also extracted users with

diameters greater than 100 and 244 m. The threshold

of 100 m corresponds to the value that we used earlier

in Sect. 3.1, and 244 m denote the outdoor signal range

for Cisco APs. This filtering reduced the number of

users from 9,140 to 6,320 and to 4,289 for the threshold

of 100 and 244 m, respectively. All three lines have big

jumps at 1 day, 3, 4, 6, and 12 months; jumps at 1 week

are relatively small. Compared to the ‘‘All’’ case, re-

sults filtered with thresholds contain a fewer number of

users with the peak period less than 24 h, and big

jumps around 3 months. Jumps around 3 months re-

flect the Dartmouth college’s quarter calendar.

4.3 Popularity of access points

To understand seasonal effects on the popularity of

access points (APs), we applied the same technique

used for user mobility. We first observed the maximum

of hourly visitors and then considered periodicities.

Figure 13 shows an example of hourly visitors to a

typical AP. The X-axis is the calendar month and the

Y-axis is the number of visitors in a log scale. The

horizontal bars show the time when the school was in

session. APs experienced more visitors while the

school was in session. During the breaks (except for

Christmas), this AP still had some visitors although the

number of visitors was reduced. This is because some

graduate students and faculty are on the campus during

the breaks although most undergraduate students leave

the campus. Another periodic pattern is the weekly

repetition; the number of visitors reduced to zero

during most weekends.

Figure 13 shows a gap from March 18 to April 19 of

2004; this gap is due to Cisco AP failures while

upgrading OS from VxWorks to IOS. The duration of

failures for many APs was elongated because APs did

not work properly on the radio side while they were

alive on the wired side. Thus, it took network admin-

istrators a while to discover malfunctioning APs.

During this time period, only 185 APs out of 780 APs

worked normally. We expect that understanding peri-

odic behavior of APs can help in detecting anomalies

in the future.

4.3.1 Maximum of hourly visitors

Figure 14 shows the cumulative fraction of the maxi-

mum of the hourly number of visitors over the year for

each AP. Unlike the user diameter distribution (see

Fig. 10), this graph does not have any knee. The graph

is heavy tailed; 2% of APs have a maximum value of

over 1,000 visitors per hour. The median of the maxi-

mum visitors over all APs is 118 visitors, and the

maximum is 3,344 visitors.
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Figure 15 shows the cumulative fraction of the

maximum number of visitors over APs for each aca-

demic term. APs are busiest during the Fall term and

least busy during the Summer term. (There are fewer

faculty and students on campus in Summer term.)

Winter and Spring terms show similar distributions.

To understand whether the geographical distribu-

tion of popular APs changes across different terms, we

plotted the APs on geographical coordinates, with six

different symbols for ranges of maximum-hourly-visi-

tors values: [0], (0,50], (50, 100], (100, 150], (150, 200],

and (200,¥). Figure 16 shows coded APs for Fall,

Winter, Spring, and Summer terms. Arrows in Fig-

ure 16a denote areas that show distinct differences

across terms. The top arrow points a computer science

building. This building is popular during the Spring and

Fall terms, due to classes held in the building. The

other two arrows point areas that are mostly under-
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graduate student housing. The area denoted by the left

arrow (Tree houses) is busiest during the Fall and least

active during the Winter. The area denoted by the right

arrow (Ripley–Woodward–Smith Cluster) is not active

during the summer. In short, while the popularity of

most APs does not change across terms, that of some

APs changes dramatically; types of buildings where

APs are located may affect these seasonal variations.

4.3.2 Periodicities

We used DFT to observe periodicities in the number of

hourly AP visitors. We start with our example AP (see

Fig. 13). This AP has peaks (not shown) at 1 day,

1 week, 3 months, 21 and 84 h. While both the user

diameters and the AP visitors have the strongest per-

iod of 1 day, they have different secondary periods:

3 months for the user diameter and 1 week for the AP

visitors.

Figure 17a shows the cumulative fraction of five

strongest periods of hourly visitors over all APs. The

X-axis shows the period in hours in a log scale. Peaks 1

though 5 are the five strongest periods in descending

order of strength. Most peaks have big jumps at 24 h;

Peak 1’s jump is especially big. All of them also have

smaller jumps at 168 h (1 week). As with the user

diameter (see Fig. 12a), Peak 1, 2, 3, 4 and 5 have big

jumps at 12, 6, 4, 3 and 2.5 months, respectively.

We aggregated values of the five peaks to observe

significant periods. Figure 17b shows cumulative frac-
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tion of strong periods over APs. The X-axis shows the

period in hours in a log scale. ‘‘All’’ denotes all 760

APs. ‘‘Max > 50’’ shows 550 APs whose maximum

visitors were bigger than 50. ‘‘Alive’’ shows 185 APs

that were alive during the AP radio trouble in March

and April of 2004. All three lines have their biggest

jump at 1 day and have smaller jumps at 1 week, 2.5, 3,

4, 6 and 12 months. Compared to ‘‘All’’ and

‘‘Max > 50’’, ‘‘Alive’’ has a relatively smaller jumps at

12, 6, 4, 3, and 2.5 months. We expect that this is be-

cause ‘‘Alive’’ has more APs with regular periodic

patterns than the other two groups. Apparently, the

gap during March and April affected periodicities of

those failed APs.

4.4 Summary of seasonal effects

We looked into user mobility and AP popularity pat-

terns in a 1-year trace. Maximum values provided in-

sights into a overall population makeup and DFT

revealed periodicities. Our findings can be summarized

as following:

• About 31% of all users never visited more than one

AP during an hour.

• Of the users who moved, 24% had random mobil-

ity; on the other hand, mobility behavior of less

than 3% of all APs was random.

• User mobility and AP popularity changed based on

the academic calendar.

• User mobility changed from one academic term to

another, possibly due to different weather; mobility

increased from Winter to Fall, Fall to Spring, and

Spring to Summer.

• Always-on devices had bigger maximum diameters

than the whole population of wireless devices.

• Thirty percent of non-random users had a strong

period of 1 day, while only five had a strong period

of 1 week. 32% also showed a strong period of

3 months, which corresponds to the Dartmouth’s

quarter academic calendar.

• Sixty-five percent and 21% of APs had a strong

period of 1 day and 1 week, respectively.

5 Conclusions and future work

In this article, we present a method to extract infor-

mation from real wireless network traces by trans-

forming the time series to the frequency domain using

the Fourier transform. We extracted the two most

significant periods from 1-month trace and clustered

instances using a Bayesian classification tool. We also

looked into long-term seasonal effects by analyzing a 1-

year trace. Our study is unique in using the Fourier

transform and Bayes’ theory to provide insights into

user mobility and the behavior of access points. We

were able to understand the periodic nature of users on

the Dartmouth’s wireless network, and we expect that

our method would be useful on similar traces at other

locations.

We hope that our findings provide a base for mod-

eling user mobility. One approach for modeling is to

perform the inverse DFT to obtain the time series that

represents each class as mentioned earlier in Sect. 1.

Another approach is adapting autoregressive moving

average models [4]. Generally, a time series may

consist of following components [6]:
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Fig. 17 Periodicity in APs. a Shows the cumulative fraction of
five strongest periods of hourly visitors over APs. Peaks 1
through 5 are the five strongest periods in descending order of
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series ¼ seasonal cyclesþ trendþ regression term

þ irregular effects: ð4Þ

In this article, we focused on the first component,

seasonal cycles. We divided traces into short-term and

long-term traces, and analyzed periodicities. We found

that while a daily pattern is common among both users

and APs, a weekly pattern is common only for APs.

For users, we also found a strong period of 3 months,

which corresponds to the Dartmouth’s quarter aca-

demic calendar. We plan to analyze other components

in Eq. 4 in the future. For example, we will look into

whether user mobility has a trend such as a constant

increase from 1 year to the next.

In the future, we plan to build generalized models

for user mobility. We believe that our method will help

us build models by identifying some of the significant

characteristics, by clustering users into groups that

need different models or different parameters, and by

abstracting traces.
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