
Association Control in Mobile Wireless Networks
Minkyong Kim, Zhen Liu, Srinivasan Parthasarathy, Dimitrios Pendarakis, Hao Yang

IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorn, NY 10532

Email: {minkyong, zhenl, spartha, dimitris, haoyang}@us.ibm.com

Abstract—As mobile nodes roam in a wireless network, they
continuously associate with different access points and perform
handoff operations. However, frequent handoffs can potentially
incur unacceptable delays and even interruptions for interactive
applications. To alleviate these negative impacts, we present novel
association control algorithms that can minimize the frequency
of handoffs occurred to mobile devices. Specifically, we show
that a greedy LookAhead algorithm is optimal in the offline
setting, where the user’s future mobility is known. Inspired
by such optimality, we further propose two online algorithms,
namely LookBack and Track, that operate without any future
mobility information. Instead, they seek to predict the lifetime of
an association using randomization and statistical approaches,
respectively. We evaluate the performance of these algorithms
using both analysis and trace-driven simulations. The results
show that the simple LookBack algorithm has surprisingly a
competitive ratio of (log k+2), wherek is the maximum number
of APs that a user can hear at any time, and theTrack algorithm
can achieve near-optimal performance in practical scenarios.

I. I NTRODUCTION

As mobile users roam within a wireless infrastructure net-
work, they continuously associate with different access points
(APs) to sustain their wireless connectivity. The selection of
user-AP association, known asassociation control, plays a
key role in the Quality of Service perceived by the mobile
users. For example, many wireless devices intend to associate
with the AP that currently has the strongest signal [1] or
the least load [2]. In addition to such local greedy decisions,
there are advanced association control schemes for achieving
load balancing among different APs and max-min bandwidth
fairness among different users [3]. However, all these schemes
focus on the network performance at each snapshot, yet the
stability of the association decisions is largely overlooked.
On the other hand, frequent association changes can result
in not only unacceptable delays for interactive applications,
such as VoIP, during the transition period, but also potential
interruption of real-time communication services and subse-
quent system-component failures. To address these problems,
it is highly desirable that the association decisions can lead
to not only instantaneous high-quality links but also smooth
connectivity over a long period of time.

There have been many research efforts to alleviate the
disruptive impact of handoffs by reducing the latency of indi-
vidual handoffs. Packet al. [4] attempts to minimize the chan-
nel scanning time during a handoff, while other approaches,
[5], [6], [7], attempt to minimize the handoff latency by
propagating a mobile user’s context information (e.g., security
and authentication information) proactively and aggressively

within the network. While these approaches provide significant
savings in handofflatencies over naive methods,frequent
handoffs could still be problematic for interactive applications
even with latencies of the order of tens to hundreds of milli-
seconds.

In this paper, we present a new approach for association
control that minimizes the handofffrequency; our approach
complements the existing strategies for minimizing handoff
latency. In typical wireless LAN deployments, a mobile device
is often within the communication range of multiple APs, and
can choose one of them to associate with at any point in time.
By carefully selecting APs that are likely to maximize the
duration of association, the device can significantly reduce
the number of handoffs that need to be performed. Our main
contribution is the design, analysis, and evaluation of novel
association control techniques which minimize the number of
handoffs over time. The specific contributions of our work are
as follows:

First, we introduce the handoff minimization problem for
wireless mobile devices. We consider both theoffline and
onlinesettings of this problem; in the former setting, the future
mobility pattern of the wireless device is known in advance,
while in the latter setting, future mobility is unknown. To the
best of our knowledge, we are the first to consider the problem
of association control for wireless mobile devices with thegoal
of minimizing handoff frequency.

Secondly, we presentLookAhead, an optimal algorithm
for the off-line handoff minimization problem. Although the
precise mobility patterns of wireless users may not be known
in advance in practical scenarios, theLookAhead algorithm
is significant due to two reasons: (1) The key insights from
LookAhead guide us in the design of our online algorithms,
which do not require any knowledge of users’ future mobility.
(2) We useLookAhead as a natural baseline for the perfor-
mance comparison of various association control algorithms.

Thirdly, we presentLookBack, anonlinealgorithm which
carefully applies randomization to select one AP among the
currently available set of APs. We show thatLookBack is
not only computationally efficient, but also has an expected
competitive ratio of(log k + 2), where k is the maximum
number of APs available to the user at any time. This is indeed
a non-trivial performance guarantee which cannot be obtained
through other natural algorithms. For example, consider the
natural strategy of choosing an APuniformly at random from
the set of currently available APs whenever a handoff needs
to occur. This strategy has a competitive ratio ofΘ(k) instead

of O(log k).
Lastly, we presentTrack, an online heuristic for associ-

ation control based on mobility history. The intuition behind
Track is that if the mobile users exhibit repetitive mobility
patters (or pseudo-periodicity) over long periods of time,then
such patterns can be efficiently leveraged for intelligent AP
selection in order to minimize the frequency of handoffs. This
is indeed a common scenario in practice and confirmed by our
simulation studies that indicate the performance ofTrack is
near-optimal in such scenarios.

To evaluate our proposed algorithms, we performtrace-
driven simulations based on real data set containing associa-
tions between a large set of mobile users and APs. The traces
used were collected at the University of California, San Diego
over a period of 11 weeks and record the associations, as well
as the set of APs heard by mobile users in regular 20 second
intervals. Our simulation shows that the trace contains twice
as many handoffs as that can be achieved byLookAhead, the
off-line optimal algorithm. This suggests a big opportunity for
improvement. Indeed ourLookBack andTrack algorithms
both outperform the default algorithm used in the trace, and
Track is close to optimal. These results indicate that our
techniques can significantly reduce the number of connectivity
interruptions with small additional complexity.

This paper is organized as follows. In Section II, we present
an overview of the handoff minimization problem. In Section
III, we describe the off-line optimal algorithm,LookAhead.
We then present two online algorithms,LookBack and
Track, in Section IV. In Section V, we present the results
of trace-driven simulations of our algorithms, as well as
their comparison with the existing approach of the trace. We
survey related work in Section VI, and present our concluding
remarks in Section VII.

II. T HE HANDOFF M INIMIZATION PROBLEM

In this paper, we consider a wireless network which provides
ubiquitous network access for mobile devices. Many orga-
nizations, companies and universities have already deployed
802.11-based wireless networks inside their campuses. In the
near future, wireless mesh networks promise to provide even
larger coverage, e.g., in a metropolitan area or even an entire
city. Due to the limited transmission range of 802.11 devices,
these networks consist of a large number (e.g., hundreds or
even thousands) of APs. Moreover, in most deployment sce-
narios, these APs provide redundant coverage for performance
and robustness. As such, at any given time, a mobile device
may be within the transmission range of multiple APs, and
the device must choose one of them to associate so that it can
properly send and receive traffic. This AP selection mechanism
is calledassociation control, which is typically implemented
in the device driver.

There is no specific association control scheme specified in
the 802.11 standards, thus the vendors can freely implement
their own solutions, which are typically based on perceived
signal strengths [1]. For example, a device can stay with the
currently associated AP until its signal strength drops below

a certain threshold. Then the device re-associates with the
AP that has the strongest signal at that time. Since signal
strength can fluctuate due to many factors such as path fading,
obstacles and mobility, the devices may experience frequent
handoffs. During each association change, a handoff protocol
must be invoked among the device, the previously used AP
and the new AP, so that the device can keep its current
application sessions alive. Unfortunately, this handoff process
can take hundreds of milliseconds or even a few seconds (with
802.1X authentication in place) [6] which presents noticeable
interruption for interactive applications such as VoIP. While
there have been many research efforts on reducing the handoff
latency [4], [5], [6], [7], these schemes often require changes
to the 802.11 standards, thus facing significant deployment
hurdles.

In this paper, we take a standard-compliant approach and
develop novel association control schemes to minimize the
number of handoffs that occur to a mobile device. In what
follows, we formally define the handoff minimization problem
and comment on its practical implications.
Problem Formulation: An instance of the handoff mini-
mization problem is defined as follows. We are given a
mobile user and a collection of APs. Time is divided into
discrete slots1, 2, 3, . . . , T . At each slott, the user is given a
candidate set of APs,C(t), that can satisfy the user’s minimum
quality-of-service requirement (e.g., a minimal signal strength
threshold)1. The user mustassociatewith exactly one AP in
C(t) at the beginning of slott. For any APa ∈ C(t) we say
thata is available to the user at slott. If the AP associated with
the user at slott + 1 is different from the one she associated
with during slott, then the user is said to have undergone a
handoffat slott+1. We need to design an association control
mechanism that chooses an AP for each slot. Our objective
is to minimize the total number of handoffs that the user
undergoes over all slots.

We consider both offline and online settings of the handoff
minimization problem. In the offline setting, we are given
the C(t) values for each slott as part of the problem input;
i.e., the candidate set of APs at each slot is revealedupfront.
Intuitively, the offline version models the setting where the
mobility pattern of the user is known in advance. In the online
setting, eachC(t) value is revealed only during slott; at every
slot t, we need toinstantaneouslyselect an AP in the setC(t)
and associate it with the user,without any knowledge of the
future sets:C(t + 1), C(t + 2), . . . , C(T).
Competitive Ratio: We use the notion ofcompetitive ratio
under the oblivious adversary modelin analyzing the per-
formance of an online algorithm. Given a problem instance
I, let C(I) denote the expected cost incurred by theonline
algorithm; here, the expectation is taken over (possibly) the
internal random choices made by the algorithm itself. Let
OPT (I) denote the cost incurred by the optimaloffline

1In other words, before invoking the association control mechanism, the
user may first filter out those APs with poor performance, measured by
signal strengths, current loads, etc. However, such application-specific filtering
policies are out of the scope in this work.

algorithm forI. The competitive ratio of the online algorithm
is the maximum possible value of the ratioC(I)

OPT (I) , where the
maximum is taken over all possible instances of the problem.

In the competitive ratio analysis ofLookBack, due to a
minor technicality, we define the cost of an algorithm as the
number of associations performed by the algorithm, rather than
the number of handoffs. Note that at the very first slot, an
association occurs but no handoff occurs. However, at every
other slot, a handoff occurs whenever an association occurs.
Hence, the number of associations is exactly one plus the
number of handoffs in any algorithm. We also note that the
mobile device obtains the candidate AP setC(t) by scanning
the wireless channel at timet and listening for beacons from
nearby APs. In reality, the device may scan the channel only
when the currently associated AP becomes unavailable or its
signal strength drops below a threshold. Hence, the next time
instant when a channel scan occurs is itself a function of the
current AP association.
Solution framework: A mobile node can initiate a scan-
ning whenever the channel condition (e.g., perceived signal
strength) with the currently associated AP drops below a
certain threshold,Ts. For example, ifTs is set to zero, the node
will scan only when the currently associated AP can no longer
be reached. IfTs is set to infinity (or a very large value), the
node can scan the channels continuously or periodically. By
scanning the wireless channels, the node can discover the set
of currently available APs and update the states required bythe
association control algorithms accordingly. On the other hand,
when the channel condition with the currently associated AP
falls below another threshold,Ta, the node decides to switch
to another AP by invoking the association control algorithms.
Note that the threshold for triggering a handoff,Ta, can be
different from the threshold for initiating the scanning,Ts. In
the following sections, we will describe several association
control algorithms that seek to choose the best AP upon each
handoff to minimize the handoff frequency over long time.

III. LOOKAHEAD: OPTIMAL OFFLINE ALGORITHM

We now describe algorithmLookAhead, an optimal algo-
rithm for the offline handoff minimization problem. Consider
a slot t. Suppose the user was associated with AP ‘a’ during
thepreviousslot; if this AP is available during slott, then the
user continues its previous association with ‘a’ during this slot.
In this case, no new association or handoff is needed at slot
t. Otherwise, if ‘a’ is unavailable during slott, LookAhead
selects an AP from the setC(t + 1) as follows. For any AP,
define its duration to be the number of slots for which it is
contiguouslyavailable starting from slott + 1. For example,
if AP b is available during slott + 1, t + 2, t + 3, t + 5, but
not t + 4, thenb has a duration of three.LookAhead selects
an AP in the setC(t + 1) with the maximum duration and
associates the user with this AP during slott + 1 (if there
are multiple APs with the maximum duration, one of them is
selected arbitrarily). We observe that, with the exceptionof
the first slot, whenever a new association occurs it results in a
handoff. At the first slot, by definition, an association occurs

but not a handoff. The following theorem proves the optimality
of LookAhead.

Theorem 1:Given an instance of the handoff minimization
problem, letOPT denote the number of handoffs in algorithm
LookAhead. Every algorithm incurs at leastOPT handoffs
for this instance.

Proof: Assume the contrary. Suppose there exists an
algorithmA which incurs strictly less thanOPT handoffs.
Definelength(i) as the number of slots for which associationi

persisted in algorithmA. Specifically,length(i) is the number
of slots that elapsed in algorithmA starting from theith

association until thei+1st association. For example, consider
slots1, 2, 3, 4, 5, 6, 7, and8; suppose the user associated with
access pointsa1, a1, a2, a2, a2, a3, a1 and a1 during these
slots respectively in algorithmA; then the first association
occurred at the first slot2, the second association occurred
at the third slot, the third association occurred at the sixth
slot, and the fourth association occurred at the seventh slot.
Further, length(1) = 2, length(2) = 3, length(3) = 1,
and length(4) = 2. Analogously, letoptlength(i) denote
the number of slots that elapsed in algorithmLookAhead
between itsith association until itsi + 1st association.

Clearly, the total length of all associations in any algorithm
is equal to T , which is the total number of slots in the
problem instance. The average length of an association in any
algorithm is ratio ofT and the total number of associations
that occurs in that algorithm. The total number of associations
in any algorithm is one more than the number of handoffs per-
formed by that algorithm. SinceLookAhead performsOPT

handoffs, and algorithmA performs strictly less thanOPT

handoffs, the average length of an association in AlgorithmA
is strictly greater than the average length of an association in
Algorithm LookAhead. Hence, there exists an integeri ≥ 1
such thatlength(i) > optlength(i). Let imin ≥ 1 denote the
minimum integer such thatlength(imin) > optlength(imin).
Since length(j) = optlength(j) for any j < imin, the ithmin

association occurred during the same slott in both algorithmA
andLookAhead. Hence, the candidate set of APs available
during the ithmin association is the same in both algorithms.
SinceLookAhead always chooses the AP with the maximum
duration, we haveoptlength(imin) ≥ length(imin) which is
a contradiction. This completes the proof of the theorem.

IV. ONLINE ALGORITHMS

To minimize the number of handoffs, it is important to
understand and predict users’ mobility patterns. If we have
accurate knowledge about the user’s future mobility, such as
her movement trajectory and the set of available APs at any
given time, we can obtain an optimal handoff schedule using
the algorithm presented in Section III. However, in practice,
we do not know precisely the user’s future mobility trajec-
tory. Therefore, we have developed two online algorithms,
LookBack and Track, which use the past trajectory of
individual users to intelligently select the next AP. Thesetwo

2By definition, the first association always occurs during thefirst slot.

algorithms are different in how they use the past trajectory
information.

A. LookBack: Randomized Online Algorithm

We now describe algorithmLookBack, a provably good
algorithm for theonlinehandoff minimization problem. Recall
that an online algorithm needs to determine the association
between the user and the APs during each slott, without any
knowledge of the future setsC(t + 1), C(t + 2), . . . , C(T).
AlgorithmLookBack broadly works as follows. For each slot
t, LookBack maintains a set of APsB(t) which is asubsetof
the candidate setC(t). Suppose the user was associated with
AP ‘a’ during thepreviousslot; the user continues its previous
association with ‘a’ during slott if this AP is available during
slot t. In this case, no new association or handoff is needed
at slot t. Otherwise, if ‘a’ is unavailable during slott, then
LookBack selects an AP from the setB(t) uniformly at
randomand associates the user with this AP.

We now complete the description ofLookBack by speci-
fying how B(t) is updated during slott. During the first slot,
B(1) is set toC(1) which is the candidate set of APs available
during the first slot. At timet, if B(t − 1)

⋂

C(t) 6= Φ, i.e.,
if the intersection between the currentB(·) and the candidate
set C(t) is non-null, thenB(t) = B(t − 1)

⋂

C(t). Else, if
this intersection is null, thenB(t) = C(t). Intuitively, B(t)
is the set of APs that are available currently and that were
in the setB(t − 1); if there are no such APs, thenB(t) is
the set of APs that are available currently. We emphasize that
LookBack selects a random AP in the setB(t) at slot t if
and only if the AP with which the user was associated during
the previous slot is unavailable during slott. Let k denote the
maximum number of APs available to the user at any slot.
We now prove a surprising result that the competitive ratio of
Algorithm LookBack is at most2 + log k.

1) Analysis: We define amarking process for algorithm
LookBack as follows. Recall the rules for updating the set
B(t) in LookBack. During the first slot,B(1) is set toC(1)
which is the candidate set of APs available during the first
slot. We will alwaysmark the first slot. At slott, if B(t −
1)

⋂

C(t) 6= Φ, i.e., if the intersection between the current
B(·) and the candidate setC(t) is non-null, thenB(t) = B(t−
1)

⋂

C(t). Else, if this intersection is null, thenB(t) = C(t).
In this latter case, we mark slott. The following claim holds.

Claim 2: Let OPT denote the optimal number of asso-
ciations for the given instance. Let` denote the number of
slots marked by algorithmLookBack for this instance. Then,
OPT ≥ `.

Proof: Consider any two slotst1 andt2 that were marked
successively byLookBack. By definition of the marking
process, there does not exist any AP which is available
contiguously during all the slotst1, t1 + 1, . . . , t2. Hence, in
any algorithm, the AP associated with the user during a marked
slot is different from the AP associated with the user during
the previously marked slot. Thus, the minimum number of
associations needed for the instance is at least the number of
marked slots, which is̀. This proves the claim.

Claim 3: Consider any two slotst1 and t2 that were
marked successively byLookBack. The expected number
of associations performed byLookBack during the slots
t1, t1 + 1, . . . , t2 − 1 is at most2 + log k.

Proof: We first observe that by definition of the marking
process, there exists at least one AP which is available during
all the slotst1, t1 + 1, . . . , t2− 1, but there is no AP which is
available during all these slots as well as during slott2. Since
slot t1 was marked, we haveB(t1) = C(t1). Let m = |B(t1)|.
As in the algorithmLookAhead, define the duration of an AP
in the setB(t1) to the number of contiguous slots for which
the AP is available starting at slott1. Leta1, a2, . . . , am denote
the ordered list of APs inC(t1) sorted in the decreasing order
of their durations. If the random AP in the setC(t1) that is
first associated with the user luckily turns out to bea1, then
this AP will be available until timet2 and no more associations
are required until then.

More generally, letα denote the number of APs in the
set C(t1) with the maximum duration. The user first selects
a random APai1 ∈ B(t1) and associates withai1 . This
association lasts fordi1 slots, wheredi1 is the duration of
ai1 . Crucially, the update rule for the setB(·) ensures that
at time t = di1 + 1, when the user needs to associate with a
new AP,noneof the APs with duration≤ di1 will be part of
the setB(t1 + di1). Hence, the second APai2 which the user
associates with is selected at random among all APs in the set
C(t1) whose durations are strictly greater thandi1 ; the third
AP is a random choice among those APs in the setCt1 whose
durations are strictly greater thandi2 , and so on. This selection
process terminates when the user associates with one of the
first α APs a1, a2, . . . , aα which possess the maximum dura-
tion. From the above description, the randomized AP selection
process can be seen to be analogous to the randomized binary
search algorithm. We now show using an analysis similar to
that of randomized binary search that the expected number of
associations performed by the user until she selects one of the
α APs in the setC(t1) with the maximum duration is at most
2 + log(k).

Let Z(j) denote the expected number of associations per-
formed by the user until she selects one of firstα APs, given
that only thej APs with the longest duration are currently in
the setB(·). We have,

Z(j) = 1 (if j = α) (1)

Z(j) ≤
α

j
+

j
∑

q=α+1

1 + Z(q − 1)

j
(if j > α) (2)

The rationale behind Eq. 1 is as follows: if the current APs
in the setB(·) are exactly the firstα APs with the longest
duration, then with probability one, the association process
will terminate in a single step. Hence,Z(j) = 1 in this case.
The rationale behind Eq. 2 is as follows: whenj > α, we
have two scenarios; in the first scenario, with probabilityα

j
,

the user’s random choice will coincide with the firstα APs
andZ(j) = 1. In the second scenario, with probability1

j
the

user will choose a fixed AP among the lastj − α APs; if the

user chooses the APaq for someq ∈ α + 1, . . . , j, then this
incurs one association; further, during the slot at which the
next association occurs, there are at mostq− 1 APs in the set
B(·) and the expected number of associations at that stage is
at mostZ(q − 1).

Given Eq. 1 and 2, we now show using induction that:

∀ j ≥ α : Z(j) ≤ 1 +
1

α
+

1

α + 1
+ · · ·+

1

j − 1
(3)

W.l.o.g., we will first assume that for allj, Eq. 2 holds with
equality instead of≤. Hence, we have:

Z(j) =
α

j
+

j
∑

q=α+1

1 + Z(q − 1)

j
(if j > α) (4)

Eq. 3 clearly holds forj = α from Eq. 1. It is also easy to
verify that Eq. 3 holds forj = α + 1. Let u ≥ α + 1. Assume
that Eq. 3 holds for allj in α, . . . , u. We now prove that Eq.
3 holds forj = u+1. By Eq. 4, we have:Z(u+1) = α

u+1 +
∑u+1

q=α+1
1+Z(q−1)

u+1 = α
u+1 + u

u+1 ·
1
u

∑u

q=α+1(1+Z(q−1))+
1+Z(u)

u+1 = α
u+1 + u

u+1 ·
(

Z(u)− α
u

)

+ 1+Z(u)
u+1 = 1

u+1 + Z(u).
The induction claim follows by summing up the Harmonic

series yielded by the above expression. The summation1
α

+
1

α+1 + · · · + 1
j−1 is at most1 + log(j − 1) for any j > 1;

further,k is the maximum number of APs available to the user
during any slot and hencej is at mostk. Hence, the claim
follows.

Theorem 4:Given an instance of the handoff minimization
problem, letR denote the number of associations performed
by algorithmLookBack, and letOPT denote the optimal
number of associations required for this instance. We have
E[R] ≤ (2 + log k) ·OPT .

Proof: By Claim 2,OPT ≥ `, where` is the number of
slots marked byLookBack. By Claim 3,R ≤ (2+ log k) · `.
These facts together prove the theorem.

B. Track: Mobility-Based Algorithm

We now describe our mobility-based algorithm,Track.
Figure 1 shows an example scenario with two mobile wireless
nodes moving through an intersection. Initially, Node 1 scans
wireless channels and hears access point A and B, and
associates with B. As it enters the intersection, it loses the
connectivity to B. It scans again and discovers two APs: E
and F. Given Node 1’s trajectory, Node 1 can be associated
longer with E than F, and thus should choose E. Node 2 in
Figure 1 initially hears C and D, and associates with D. As it
loses the connectivity, it scans and discovers E and F. Given
its trajectory, it can be associated longer with F than E, so
it should choose F. Note that even though both Node 1 and
Node 2 heard E and F at the intersection, Node 1 should
choose E and Node 2 should choose F. The optimal AP is
different because their trajectories are different.

Since the set of APs available to a node depends on the
node’s location, we use it to represent the node’s location.We
then use the list of sets of APs to denote the node’s trajectory.
Our Track algorithm predicts future trajectories using the

Node 1

A

B

D
C

E

F

1

2

A
B

C

D

E

F

x

x

FD

T1 T2

Node 2

x

x

A
B

C

D

E

F

x
x

x

x

EB

T1 T2

Figure 1. Example AP association scenario.Solid arrows represent
trajectory of Node 1, and dotted arrows denote that of Node 2.‘A’ through
‘F’ show the APs. In the tables, ‘x’ shows the AP that the node heard at each
scan, and the last row shows the AP with which the node associated.

user’s past movement trajectory. Given a predicted trajectory
and a set of currently available APs,Track determines the AP
with which the node may be associated longest. We describe
below howTrack maintains the user’s movement trajectory
(i.e., states) and expected association durations if a node were
to choose a particular AP among the available ones.
Track defines a state to be a list of available AP sets. The

algorithm with history ofn usesn sets, starting from the most
current set,C(t), to define stateST (p):

ST (p) = (C(t), C(t − 1), . . . , C(m)) (5)

where m = max[t − n, 0] and p is the state identifier.
Each state represents a unique trajectory. For convenience
of description, we callC(t) of ST (p) as Vp. For each state
ST (i), we maintain the expected association duration of APs
in Vi. If the available AP at scant−1 continues to be available
at scant, we add the elapsed time between two scans to the
sessionassociation duration of that AP. However, if the node
no longer hears the AP att, we do not know exactly when the
AP became unavailable; it could have been anytime between
the two scans. In this case, given no other knowledge about
the distribution of the association times, we assume that the
expect time that the node continued to hear the AP is equal
to half the elapsed time between the two scans. At scant, we
need to update session duration of the APs not only in the
current state, but also all other states (calledliveStates) whose
APs have been continuously available up to scant−1. A state,
ST (j), is removed from theliveStatesset only when none of
its APs inVj is in C(t).

Once an AP stops from being continuously available, we
update theexpectedassociation duration with the latest ob-
served session duration. To compute the expected duration,
we use the exponentially weighted moving average (EWMA):

Et =
1

4
Dt +

3

4
Et−1 (6)

whereEt is the expected duration andDt is the latest observed
duration. In summary, the session association duration is up-
dated after each scan, while the expected association duration
is updated only when an AP is no longer available.

T0 T1 T2 T3
A × × ×

B × ×

C × × × ×

↪→ ST(1)←↩

↪→ ST(2)←↩

↪→ ST(3)←↩

Table I
TRACK -1: EXAMPLE SCENARIO FOR STATE UPDATES . ‘A’, ‘B’, AND ‘C’

DENOTE APS, AND ‘×’ SHOWS THEAPS DETECTED AT EACH SCAN.
ST(1), ST(2),AND ST(3)REPRESENT STATES.

State AP T1 T2 T3

1 (B,C),(A,C) B 0 20 30
C 0 20 40

2 (A,B,C),(B,C) A 0 20
B 0 10
C 0 20

3 (A,C),(A,B,C) A 0
C 0

Table II
TRACK -1: STATE UPDATES OVER TIME . THIS TABLE SHOWS HOW THE

EXPECTED ASSOCIATION DURATIONS FORAPS ARE UPDATED OVER TIME

FOR THE EXAMPLE SCENARIO ILLUSTRATED INTABLE I. WE ASSUME

THAT THE ELAPSED TIME BETWEEN EACH SCAN IS20 SECONDS.

Consider an example scenario shown in Table I. This
example illustrates how theTrack algorithm with history of
1 (Track-1) updates the session association duration for a
mobile node. Initially at T0, the node hears A and C. At T1,
it discovers B and C. At this point, ST(1) can be defined using
C(1)=(B,C) and C(0)=(A,C). ST(2) and ST(3) are defined
similarly. Table II shows how session association durations are
updated for this particular example. Assume that the elapsed
time between each scan (or time slot) is 20 seconds. ST(1)
keeps track of the expected duration of B and C. At T2,
B and C are still available, so we add 20 seconds to both
durations in ST(1). At T3, we add 10 seconds to B since it
is no longer available, while we add 20 to C since it is still
available. The session duration in other states is maintained
in the same manner. Note that at each scan, we update the
durations not only in the current state, but also in other states
that contain APs that have been available continuously.

In our current implementation, states do not expire; we
assume that we have an unlimited storage space for the states.
This assumption was reasonable since the number of new
states converges to a constant after a certain period of time(as
confirmed by the evaluation results in Section V). However,
for real deployment of this algorithm, we can associate an
expiration time with each state to cope with limited storage
space for maintaining the states.

Algorithm 1 shows the pseudo code of theTrack al-
gorithm. Given the set of currently available APs,Pt, this
function returns the AP with the longest expected duration
amongPt.

V. EVALUATION

We have evaluated the performance of our proposed asso-
ciation control algorithms using trace-driven simulations. The
results show that our algorithms can significantly reduce the
number of handoffs that occur to a mobile device. We first

Algorithm 1 TRACK(Pt)
Require: Pt: available APs

for A← each AP inPt do
for S ← each state inA’s liveStatesdo

UpdateSessionDuration(A,S,elapsedTime)
end for

end for
for B ← each AP inPt−1 − Pt do

for T ← each state inB’s liveStatesdo
UpdateSessionDuration(B,T ,elapsedTime/2)
UpdateExpectedDuration(B,T) /* Eq. 6 */

end for
end for
if Pt contains currentlyAssociatedAPthen

return currentlyAssociatedAP
end if
for C ← each AP inPt do

UpdateExpectedDuration(C,CurrentState)
end for
return AP with the longest expected duration amongPt

describe our evaluation methodology in Section V-A and then
present the simulation results in Section V-B.

A. Methodology

In order to evaluate the performance of our algorithms in a
realistic setting, we drove our simulations by an extensiveset
of mobility trace collected from 275 college-freshman users
over an 11-week period at UCSD [8]. In this trace, each user
carried a PDA equipped with a Symbol Wireless Networker
802.11b card and freely roamed in the UCSD campus, which
provided extensive 802.11b coverage. When the PDA was
powered on, it sampled and recorded every 20 seconds the list
of APs it overheard, as well as their respective signal strengths.
Among these APs, the device also recorded the AP with which
the device associated.

While the trace was originally collected for the purpose
of wireless topology discovery, it naturally provides a good
sample for our association control study because it contains
all necessary information needed for the operation of our
algorithms. In particular, at any given time, the trace provides
not only the set of APs that a device can be potentially
associated to, but also the history of how long the device has
stayed in each AP’s vicinity. Moreover, the trace also provides
realistic mobility profiles for a campus environment, which
are critical in understanding the impact of handoffs on these
mobile users.

During our study, however, we also found several limitations
in the trace. First, the trace contains many gaps where no
samples are available for an extended period of time. This may
be because the device had run out of battery or the user simply
turned the device off. Second, the device may temporarily lose
its connectivity and may not be associated with any AP even
though it could hear at least one AP. From the trace itself, the
reasons for such phenomena are not clear. Third, each line in

the trace denotes a reading for a particular user for one of the
APs that the user heard during a scan. Although each scan
is supposed to be 20 seconds apart, some readings (or lines
of traces) are only several seconds apart. We expect that this
is mostly due to clock synchronization issues. To address this
problem, we considered consecutive trace lines that are less
than or equal to 3 seconds apart to be readings from one scan.

To ensure a meaningful and fair comparison, we pre-
processed the trace as follows before we fed it into our
simulator. First, we removed all samples in which the device
was not associated with any AP. In other words, we ignored the
intervals of connection loss in the trace. Secondly, whenever
the samples were missing for 30 minutes or longer, we
assumed that the device was turned off, and we did not count
its first association after the wakeup as a handoff. We chose
30 minutes since it is often the default duration after which
APs disassociate users if they have heard no messages from
the users.

For each user, our simulator for on-line algorithms—
LookBack and Track—reads in each scan, which happened
every 20 seconds, and counts the number of handoffs that
happened during individual days. For Track algorithm, we use
the history of 1 and history of 0, denoted by Track-1 and
Track-0, respectively.

Because the UCSD trace was collected to include as much
information as possible for future studies, it contains theset
of APs that each mobile device scanned every 20 seconds.
However, in reality, periodic scanning consumes power and,
therefore, is not desirable for battery-powered mobile devices.
To apply our Track algorithm to realistic settings, we also
simulated our Track algorithm with limited scans, instead of
with every scan in the trace. We pretended that the mobile
device scans only when it needs to change its associated AP.
In our simulation, we included Track algorithm with limited
scans using history of 1 and 0: Track-1S and Track-0S.

For comparison purposes, we also counted the number
of handoffs that occurred in the trace, which indicates the
performance of the particular wireless cards in use. These
cards periodically scan the channels and re-associate withthe
AP that has the strongest signal, unless the card is configured
otherwise [8]. Such signal-based heuristics are also used by
many existing WLAN devices on the market.

In practice, a user may lose her wireless connectivity due to
moving to an area without coverage. She may then later roam
to another location with connectivity and re-connect to the
network. Since handoff from one AP to anther cannot happen
in this scenario, we do not count the re-connection as handoff.

We evaluate the performance of different algorithms on a
user-daybasis. Our primary metric is the number of handoffs
that occurred for a particular user in a particular day. To assess
the benefits of our algorithms for highly mobile users, we also
extracted a subset ofmobile user-daysfrom the trace. A mobile
user-day is defined as a user-day in which at least 20 handoffs
occurred in the trace. As we shall see, such mobile user-days
typically reflect a higher degree of mobility, and hence benefit
more from our algorithms, as compared to the rest of the trace.

Algorithms All user-days Mobile user-days

Trace 5.99 44.89
Optimal 3.09 22.62

LookBack 4.28 28.41
Track-1 3.62 26.15
Track-0 3.65 26.19
Track-1S 3.82 24.44
Track-0S 3.89 24.77

Table III
AVERAGE NUMBER OF HANDOFFS FOR DIFFERENT ALGORITHMS .

B. Simulation Results

The UCSD trace contains 7028 unique user-days. Out of
7028, only 613 user-days (8.7%) have handoffs greater than
or equal to 20. This low percentage for mobile users is not
surprising and goes along with the analysis presented by
Hendersonet al. [9] that users are not mobile most of time. For
Track algorithm with limited scans, we have 6716 user-days,
out of which 606 are mobile user-days. The reason that these
user-days are less than ones in the original trace is becausewe
assume that if a node does not need to change the currently
associated AP, it does not scan wireless channels and therefore
some user-days trace are considered to be empty; these omitted
user-days are stationary days since there were no need for new
scans.

To understand the overall performance, we computed the
average number of handoffs for different algorithms, shown
in Table III. Not surprisingly, Optimal generated the minimum
average number of handoffs. The Track algorithms performed
closed to optimal, while LookBack performed worse than
Track but still better than Trace. Among variations of Track
algorithms, history of 1 performed better than history of 0
for both the original Track algorithm and the Track algorithm
with limited scans. This performance improvement for history
of 1 comes in added complexity, which we will analyze below.
For all user-days, the original Track (Track-*) outperformed
the Track with limited scans (Track-*S) as expected. However,
the difference is small. For mobile user-days, Track-*S outper-
formed Track-*; we currently do not have a clear explanation
for this particular result.

Table IV shows the average number of scans per user-day.
From the trace where scanning was performed every 20 sec-
onds, the average is 1214.3 scans per user-day. If devices scan
only when they need to handoff, the average falls down to 6.7
scans per user-day. Although periodic scanning is commonly
used in many 802.11-based localization systems [10], we
expect that aggressive scanning nonetheless reduces the battery
life of mobile devices. In the future, we plan to explore the
power consumption of scanning to better understand overhead
of our approaches. Another concern in aggressive scanning is
its effect on data transmission [11]. In light of these concerns,
it is significant that the performance of the Track algorithm
using only limited scans is not much different from the Track
algorithm with periodic scans. Thus, Track with limited scans
is a better choice for battery-powered mobile devices.

While the average handoffs provides a good summary of

Average scan count

All scans 1214.3
Limited scans 6.7

Table IV
AVERAGE NUMBER OF SCANS PER USER-DAY. THE FIRST ROW SHOWS

THE NUMBER OF SCANS IN THE TRACE(USED BY THE ORIGINAL TRACK

ALGORITHM), AND THE SECOND ROW SHOWS THE NUMBER OF SCANS
THAT THE TRACK ALGORITHM WITH LIMITED SCANS USED.

−10 0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference

Us
er

−D
ay

 C
DF

Optimal
LookBack
Track−1
Track−0
Track−1S
Track−0S

(a) All user-days

−10 0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference

Us
er

−D
ay

 C
DF

Optimal
LookBack
Track−1
Track−0
Track−1S
Track−0S

(b) Mobile user-days

Figure 2. Difference in handover counts.The x-axis shows the difference
between the handoffs detected in the trace and those using different algo-
rithms. The y-axis shows the CDF of user-days. (a) and (b) show the difference
for all user-days and that for mobile user-days, respectively. Although the
maximum difference is 232 handoffs, of which Optimal produced, the x-axis
for both figures are truncated at 100 for better viewing.

performance, we now consider the performance gain in more
detail. We computed the number of handoffs reduced com-
pared to those in the trace for each user-day, shown in Figure2.
The x-axis shows the difference in handoffs, and the y-axis
shows the CDF of all user-days. (a) and (b) show the difference
for all user-days and that for mobile user-days, respectively.
Although the maximum difference is 232 handoffs, of which
Optimal produced, the x-axis for both figures are truncated at
100 for better viewing. We also excluded user-days of which
the trace has zero handoffs; we ended up with 3328 user-days
and 613 mobile user-days.

Figure 2 shows that Track algorithms performed better than
LookBack but worse than the off-line optimal. Using Track
algorithms, roughly 12%-13% of all user-days reduced more
than 10 handoffs per day. For mobile user-days, roughly 60%
reduced more than 10 handoffs, and 9% reduced more than
40 handoffs per day.

Heuristic Track-1 Track-0 Track-1S Track-0S
States 8.5 3.7 4.1 2.2

Table V
AVERAGE NUMBER OF NEW STATES GENERATED PER DAY .

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

Day

Av
er

ag
e

nu
m

be
r o

f n
ew

 st
at

es

Track−1
Track−0
Track−1S
Track−0S

Figure 3. Average number of new states over time.

We now want to consider the overhead or complexity of
variations of our Track algorithm. As Track encounters new
states, it needs to keep adding them to the existing set of states.
We computed the average number of new states generated per
day for each variations. The result is shown in Table V. The
algorithms using history of 0 reduced the average states by
more than half (56%) for the original Track and by 46% for
the Track with limited scans.

We also extracted the average number of newly generated
states over time, shown in Figure 3. The x-axis shows days
and the y-axis shows the average new states for each day. Days
on the x-axis does not represent calendar days. Instead, they
denoteith day each user connected to the wireless network. All
four variations of Track algorithm showed a decreasing trend
over time. However, Track-1 fluctuated by a large amount,
meaning that for certain days, many new states needed to be
generated even after the algorithm was run for many days.
Track-1S also fluctuated even though the amount was less than
Track-1. Both Track-0 and Track-0S eventually approached
zero, meaning that no new states were encountered.

C. Summary of results

Here we summarize our results for all user-days:
• Compared to the trace, Optimal algorithm reduced the

number of handoffs nearly by half (48%). Although this
algorithm would not be appricable in many cases, it can
still be used in the cases where the future mobility pattern
is known, such as trains.

• LookBack algorithm provided a worse-case boundary of
(logk + 2), although its performance gain was moderate.

• Compared to the trace, Track algorithm (Track-1S) re-
duced the number of handoffs by 36%, using only a small
number of scans (6.7) and a small number of states (4.1)
per user-day.

VI. RELATED WORK

Association control is an important component of wireless
mobile networks that affects the system performance, espe-

cially when the access points are densely deployed. Numer-
ous association control schemes have been proposed in the
research literature [12], [13], [3], [14], while various vendors
of WLAN products also have their own proprietary solutions
[2], [1]. In a broad context, the association decisions have
direct impact on the network performance in various per-
spectives, e.g., load balancing across APs, network utilization,
throughput fairness among different users, and user-perceived
interruptions. The existing solutions all attempt to optimize
along one dimension or the other.

A client can choose the AP with the highest signal strength,
so that it can maximize its own expected throughput [1].
Alternatively, in order to balance the AP loads, each AP can
broadcast its current load in the Beacon message and each
client can choose the least loaded AP in its vicinity [2].
In order to achieve certain QoS guarantees, the association
schemes can take into account the available bandwidth on
each AP. For example, in [12], a user can request a minimal
amount of bandwidth and will subsequently be associated with
an AP that can satisfy such a bandwidth requirement. Tsaiet
al. [13] further propose to re-associate the existing users when
the bandwidth requests are violated. Bejeranoet al. [3] also
propose efficient association algorithms to achieve max-min
bandwidth fairness among different users. To address the flash-
crowd problems in a heavily utilized network, IQU [14] was
recently proposed to queue the association requests from the
users and grant network access to them in a round-robin and
preemptive manner. Our work differs from all these existing
designs in that we focus on the user-perceived connection
interruptions by minimizing the number of handoffs occurring
to a mobile client. To the best of our knowledge, this problem
has not been studied before.

There are many previous efforts to provide seamless con-
nectivity for mobile users by minimizing the handoff latency.
For example, Packet al. [4] propose to reduce the chan-
nel scanning time by using topographical knowledge of the
deployed APs. However, this approach requires centralized
maintenance and dissemination of the entire network topology.
Neighbor Graph techniques were proposed in [5], [6] to update
the network topology in a distributed and adaptive manner.
Recently, SyncScan [7] was proposed to avoid the need
for such topology information by continuously monitoring
the nearby APs at each client. Furthermore, many of these
designs make extensive use of proactive caching, so that
the time spent on re-authentication and re-association can
be minimized. While each of these fast handoff mechanisms
has its own merits, they all require significant changes to
the 802.11 protocol specifications and hence face various
deployment hurdles in practice. Given that fast handoff is
not available in most deployed 802.11 networks, we take a
different approach in this work by minimizing the number of
handoffs. As such, our proposed association control schemes
are orthogonal and complimentary to the existing fast handoff
designs. Furthermore, our solution requires no changes to the
802.11 protocol or the deployed APs, thus it can be readily
used in today’s 802.11 networks.

VII. C ONCLUSIONS

Maintaining seamless connectivity for mobile users is a
major research challenge in wireless networks. To this end,
we have presented novel association control algorithms to
minimize the frequency of handoffs and thus alleviate the
interruptions experienced by mobile users. The fundamental
insight in our algorithms is that the association decisions
should take into account the longevity of the associations,
which is ignored by the existing solutions. The association
lifetime depends on how the users move in the future. We pro-
pose two online algorithms,LookBack and Track, which
use randomization and a statistical approach, respectively, to
estimate the longevity of associations. Our trace-driven simu-
lations confirm the effectiveness of the proposed algorithms.
In particular, theTrack algorithm can achieve near-optimal
performance in realistic settings, and can be readily deployed
in the existing 802.11 wireless networks.

REFERENCES

[1] Symbol Technologies, “Wireless Networker CF Radio CardData Sheet,”
2006.

[2] Cisco Systems Inc., “Aironet 802.11 a/b/g WLAN Client Adapter Data
Sheet,” 2006.

[3] Y. Bejerano, S.-J. Han, and L. E. Li, “Fairness and load balancing in
wireless LANs using association control,” inMobiCom ’04: Proceedings
of the 10th Annual International Conference on Mobile Computing and
Networking. Philadelphia, PA: ACM, September 2004, pp. 315–329.

[4] S. Pack and Y. Choi, “ Fast Inter-AP Handoff using Predictive Authen-
tication Scheme in a Public Wireless LAN,” inProc. IEEE Networks
Conference, Atlanta, GA, USA, August 2002.

[5] M. Shin, A. Mishra, and W. Arbaugh, “Improving the Latency of 802.11
Hand-offs using Neighbor Graphs,” inProc. ACM MobiSys, Boston, MA,
USA, June 2004.

[6] A. Mishra, M. Shin, and W. Arbaugh, “Context Caching using Neighbor
Graphs for Fast Handoffs in a Wireless Network,” inProc. IEEE
Infocom, Hong Kong, China, March 2004.

[7] I. Ramani and S. Savage, “SyncScan: Practical Fast Handoff for 802.11
Infrastructure Networks,” inProc. IEEE Infocom, Miami, FL, USA,
March 2005.

[8] M. MaNett and G. M. Voelker, “Access and Mobility of Wireless PDA
Users,”Mobile Computing Communications Review, vol. 9, pp. 40–55,
April 2005.

[9] T. Henderson, D. Kotz, and I. Abyzov, “The changing usageof a
mature campus-wide wireless network,” inMobiCom ’04: Proceedings
of the 10th Annual International Conference on Mobile Computing and
Networking. Philadelphia, PA: ACM, September 2004, pp. 187–201.

[10] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and
L. E. Kavraki, “Practical robust localization over large-scale 802.11
wireless networks,” inMobiCom ’04: Proceedings of the 10th An-
nual International Conference on Mobile Computing and Networking.
Philadelphia, PA: ACM, September 2004, pp. 70–84.

[11] T. King, T. Kaenselmann, S. Kopf, and W. Effelsberg, “Overhearing the
wireless interface for 802.11-based positioning systems,” in Proceedings
of the Fifth Annual IEEE International Conference on Pervasive Com-
puting and Communications (PerCom’07), White Plains, NY, 2006, pp.
145–150.

[12] A. Balachandran, P. Bahl, and G. Voelker, “Hot-Spot Congestion Relief
in Public-area Wireless Networks,”SIGCOMM Computer Communica-
tion Review, vol. 32, pp. 59–59, January 2002.

[13] T.-C. Tsai and C.-F. Lien, “IEEE 802.11 Hot-Spot Load Balance
and QoS-maintained Seamless Roaming,” inProc. National Computer
Symposium (NCS), 2003.

[14] A. P. Jardosh, K. Mittal, K. N. Ramachandran, E. M. Belding, and K. C.
Almeroth, “IQU: practical queue-based user association management for
WLANs,” in MobiCom ’06: Proceedings of the 12th Annual Interna-
tional Conference on Mobile Computing and Networking. Los Angeles,
CA: ACM, September 2006, pp. 158–169.

