
Delay-Cognizant Reliable Delivery for

Publish/Subscribe Overlay Networks

Shuo Guo

University of Minnesota

Minneapolis, Minnesota 55455

Email: sguo@umn.edu

Kyriakos Karenos*

Microsoft

London, United Kingdom

Email: kyriak@microsoft.com

Minkyong Kim, Hui Lei, and Johnathan Reason

IBM T. J. Watson Research Center

Hawthorne, New York 10532

Email: {minkyong, hlei, reason}@us.ibm.com

Abstract—The number of real-world applications that require
QoS guarantees is constantly increasing and they often follow the
publish/subscribe (pub/sub) messaging paradigm, which provides
loosely coupled many-to-many communication. Many QoS-aware
systems use overlay networks as they allow flexible routing.
To provide QoS-aware pub/sub messaging in overlay networks,
the messaging system should be adaptive to the changes in
network conditions (such as delay and failures). However, many
pub/sub systems depend on a fixed routing topology and it is
costly to rebuild this topology in case of failures. This study
seeks to address this challenge with Delay-Cognizant Reliable
Delivery (DCRD), a novel and delay-aware dynamic routing
algorithm to provide reliable message delivery for pub/sub
overlay networks. For reliable message delivery, DCRD no longer
uses a fixed routing topology. Instead, it dynamically switches
among different links to bypass link failures and increase the
chance to meet QoS requirement. Each node tries different
neighboring nodes in an order that is mathematically proven
to minimize the expected delay of packet delivery. With all
possible neighboring nodes sorted this way, DCRD guarantees
that packets are delivered as long as there exists a path between
the publisher and subscriber and that the expected delay is
minimized. DCRD is extensively evaluated in simulation with
comparison to existing tree-based routing approaches as well as
a multipath approach using different network topologies, delay
constraints, and loss probabilities. Simulation results show that
DCRD performs better than all the baselines, providing reliable
message delivery and satisfying the delay requirement for more
than 98% of messages when the link failure probability is 4%
or less.

I. INTRODUCTION

As distributed computing applications that involve event-

based response to real world sensing become more common,

there has been increasing emphasis in managing the end-

to-end performance of message delivery, particularly over

a wide-area network (WAN). One approach to managing

the performance of message delivery in a WAN is to use

an overlay network, which provides a messaging substrate

for applications, but overlays the physical network. Two

common messaging paradigms are message queuing [1] and

publish/subscribe (pub/sub) messaging [2]. Message queuing

provides buffering between pairs of hosts over point-to-point

paths, an approach that is most suitable for applications requir-

ing persistence, but less amenable to applications requiring

*This work was done while this author was at IBM Research.

latency awareness. Pub/sub messaging follows a many-to-

many communication pattern, allowing a decoupling between

publishers and subscribers. It is this decoupling nature of

pub/sub that makes it more suitable for applications requir-

ing latency awareness and adaptation to failures because it

allows for rapid route re-configuring when adverse network

conditions are detected.

By exploiting the decoupled nature of pub/sub messaging

and the performance management benefits of overlay network-

ing, a messaging system that is both flexible and able to man-

age performance can be achieved. However, simultaneously

managing latency, per some latency requirement, and pro-

viding reliable message delivery is still a challenge. Existing

techniques for providing reliable delivery, such as topology

recovery and retransmissions, provide very limited control

on delay requirement. For example, the Resilient Overlay

Networks (RON) [3] approach detects and recovers from path

outages within several seconds by periodically monitoring and

updating the quality of Internet paths. It decides the route for

packets based on the monitoring result. However, packets that

are already experiencing a path outage during the interval of

two updates have little chance to be delivered on time. Even

with the help of retransmissions, it is still hard for packets

to get through a failed or highly congested link, leaving

the delay management problem unsolved. Similarly, standard

approaches to timely delivery of messages, such as priority-

based queuing and shortest path tree, do not simultaneously

consider reliable delivery of messages. Although some de-

signs, such as the multipath approach [4] and Forward Error

Correction (FEC) [5], propose to improve the reliability by

adding redundancy into the information transmitted, at the cost

of introducing more traffic into the network, they still do not

guarantee delivery since they use a fixed set of routing paths;

they fail to deliver in case when path outage and congestion

affect all the selected paths.

This study seeks to address the challenge of simultane-

ously managing latency performance and reliable delivery

of messages. We propose Delay-Cognizant Reliable Delivery

(DCRD), a novel and delay-aware dynamic routing algorithm

to provide reliable message delivery for pub/sub overlay net-

works. DCRD no longer uses a fixed routing topology. Instead,

it dynamically switches among different links to bypass link



2

failures online and increase the chance to meet QoS require-

ment. Each node tries different neighboring nodes in an order

that is mathematically proven to minimize the expected delay

of packet delivery. With all possible neighboring nodes sorted

this way, DCRD guarantees that packets are delivered as long

as there exists a path between the publisher and subscriber

and that the expected delay is minimized. In summary, we

have the following contributions: 1) a novel, delay-aware,

dynamic routing algorithm DCRD which considers both delay

requirement and reliable delivery when determining the next

broker hop in the overlay, and the next-hop decision is based

on local information only, providing a means for forwarding

brokers to rapidly adapt to changing network conditions; 2)

a proof showing DCRD to provide the optimal solution in

terms of delay performance under the problem formulation;

and 3) extensive simulation results that show DCRD outper-

forms common tree-based approaches as well as the multipath

approach. Compared to common tree-based approaches and

the multipath approach, we show that DCRD provides more

comprehensive performance management, especially when

considering latency requirements.

The rest of the paper is organized as follows. Section II

summarizes the related work. The design and analysis of

DCRD is described in Section III. Section IV presents the

performance evaluation of DCRD under different loss and link

failure conditions. Section V concludes the paper.

II. RELATED WORK

Challenges associated with multi-destination reliable deliv-

ery have been addressed extensively in the literature. Method-

ologies are broadly categorized into protocols and techniques

implemented at the lower layers of the IP stack (e.g., IGMP)

and those implemented at the application layer, where DCRD

falls into the latter category. Application layer multicast is

significantly more popular due to its flexibility of design,

as well as the ability to provide differentiated QoS. Overlay

based multicast techniques mostly focus on the problem of

constructing a multicast tree to deliver content from one or

more source to multiple destination. The authors in [6] provide

a survey of techniques on constructing a multicast tree, while

[7], [8] focus on the problem of allowing nodes to join and

leave the multicast tree efficiently. In [8] the authors use a min-

imum latency tree to reduce delay. However, unlike DCRD, it

does not attempt to meet any delay requirements. Furthermore,

static tree-based approaches suffer from the fact that failures

across the overlay links would require reconstruction, adding

undesirable delay. The authors of [9] also construct a multicast

tree, but the overlay links are constructed over TCP rather

than UDP, and thus it specifically focuses on the throughput

maximization.

Due to the increase in the usability of the pub/sub paradigm,

the functionality of overlay multicast technique has been

extended in several papers [10]–[12]. The goal of these

techniques, unlike DCRD, is to construct a topology that

is content-aware, meaning that it connects publishers and

subscribers based on the content rather than topics. In this

respect, these techniques put less weight on satisfying delay

requirements. The authors in [13] address failures in a pub/sub

network based on a peer-to-peer multi-ring approach similar

to [14]. While latency using multiple rings can be reduced,

there is still no explicit attempt in these approaches to meet

particular delay requirements of applications.

To handle network failures, overlay networks have been

used in [3], [4], which propose utilizing indirect overlay

paths to avoid a failed underlay link. Furthermore, the authors

of [15] address the failures in the context of multicast and

propose a tree construction methodology that minimizes the

correlation between nodes. Although these techniques improve

the resiliency of the delivery overlay, the overlays proposed

in these papers are not designed to provide reliable or delay-

aware delivery.

III. DESIGN

In this section we present the design of DCRD for an

overlay-based pub/sub system. With link failures and conges-

tions unpredictably occurring at overlay links, a fixed delivery

structure in traditional solutions [7], [8] that utilize a pre-

constructed multicast tree is not efficient. When a link in

the multicast tree fails, the tree needs to be rebuilt and this

cost is high. Thus, packets are not likely to be delivered

within the QoS delay requirements. To solve this problem,

DCRD does not use a fixed delivery structure. Instead, a

node tries sequentially all its neighboring nodes, who are

expected to deliver the packets within the delay requirements.

If the node does not get an ACK from a neighboring node,

it first retransmits the packet. The loss of packet could be

due to the link being temporarily unavailable or the link has

failed for a longer time period (called persistent failures).

By retransmitting the packet, the packet may be delivered

successfully in case of former. However, it cannot succeed

in case of the latter. If the re-transmission is unsuccessful, the

node then tries another neighbor.

If a node fails to deliver the packet after trying all neighbor-

ing nodes, it reroutes the packet by sending it to its upstream

node and the upstream node tries the next neighboring node

to deliver the packet. Conceptually, this recursive approach

tries its subtree of paths before sending the packet to the

upstream node. In effect, it finds an alternate path close to

the source of the problem and also close to the destination.

The reason why we need to send the packet to the upstream

node is that each node aggressively deletes a copy of packet

once it receives an ACK from its downstream neighbor to

minimize storage usage. However, this becomes a problem

when the packet cannot be delivered through its downstream

neighbors. In this situation, this node reroutes the packet to

its upstream node, which similarly tries to deliver the packet

by sending the packet to the next neighboring node.

In summary, because the route is chosen dynamically based

on the current network conditions, our DCRD approach can

significantly increase the chance of delivering the packet



3

2

1

n

S
X

i

...
...

<di,ri>

<dX,rX>

<d1,r1>

<d2,r2>

<dn,rn>

< � Xi, �Xi>

P

<0,1>

Figure 1. Recursive Computation Process

within the QoS delay requirement. As we consider all possible

neighbors, DCRD—using the dynamic rerouting and the ACK

mechanism—guarantees that packets are delivered as long as

a path (without persistent failures) exists from the publisher

and subscriber. To provide the delivery guarantee even in case

of persistent failures, we need to persist (by storing in the

persistent storage) all packets, and then send them when the

failures are recovered. Supporting the persistency mode should

be straight forward, but this mode incurs a large overhead.

Thus, we do not further discuss the persistency mode in the

rest of this paper.

A. Problem Formulation and Design Overview

In an overlay-based pub/sub system with N nodes, the

latency, α
(1)
ij , and deliver ratio, γ

(1)
ij , for a single transmission

through each overlay link i → j can be collected through

either link monitoring or online measurements. Then the

expected delay α
(m)
ij and the expected delivery ratio γ

(m)
ij

based on m transmissions can be calculated as

α
(m)
ij =

∑m

k=1(kα
(1)
ij )γ

(1)
ij (1− γ

(1)
ij )k−1

1− (1 − γ
(1)
ij )m

γ
(m)
ij = 1− (1 − γ

(1)
ij )m (1)

Noting that the computation of α
(m)
ij has an implicit condition

that the packet is delivered in m transmissions (otherwise the

delay is infinite and the expected delay is unavailable). In

Eq.1, the numerator of α
(m)
ij is the sum of the product of the

delay that the transmission succeeds at the kth transmission

and the corresponding probability, for 1 ≤ k ≤ m; the

denominator of α
(m)
ij is γ

(m)
ij , which is simply 1 minus the

probability that all the m transmissions fail. For short, we

replace α
(m)
ij and γ

(m)
ij with αij and γij . Node i is said to be

failed to deliver the packet to j if i does not receive an ACK

from j in m transmissions.

Suppose Subscriber S subscribes to a topic published by

Publisher P and specifies a delay requirement, DPS . For any

node X in the network, the delay requirement from X to S,

DXS , is equal to or less than DPS minus the shortest delay

from P to X .

Define the sending list of node X for subscriber S as a

sorted list of neighboring nodes that are expected to deliver the

packet to S with the shortest expected delay and the highest

probability to meet the delay requirement DXS . Figure 1

shows an illustration of DCRD where node X has n nodes

on the sending list labeled from 1 to n, towards subscriber S.

We assume that the order of these nodes on the sending list is

identical to the node label: node 1 is on the top of the list and

node n is on the bottom of the list. Each packet contains the

information of not only the destination subscribers but also

the broker IDs that have been on the routing path. All the

n nodes on the sending list of X towards subscriber S are

possible next-hop nodes as long as they have not been on the

routing path. When X receives a packet, it tries node 1 first

since it is at the top of the list. If X fails to deliver the packet

to node 1 (in m transmissions), or X receives the packet back

from node 1 (indicating its failure to deliver the packet to S),

X sends the packet to node 2. All the brokers that were on

the routing path are recorded in the routing path information

of the packet. The same process continues until the packet

reaches S, or X has tried all n nodes. For the latter case, X

reads the routing path information of the packet and sends the

packet back to the upstream node from which it received this

packet. The upstream node running the same DCRD algorithm

tries to reach the destination by sending the packet to the next

node on the sending list.

Before showing how to construct the sending list and the

detailed routing strategy, we first define the two parameters

of expected delay, d and the expected delivery ratio, r.

1) dX : the expected delay from the time X receives a

packet until this packet arrives at the subscriber S.

2) rX : the expected deliver ratio that node X delivers the

packet to S with the expected delay dX .

Again dX is conditional, and is calculated under the assump-

tion that the packet is finally delivered to S. Otherwise, the

delay is infinite and dX is not available.

In the next subsection, we focus on the recursive process

to compute < dX , rX > in DCRD. We present how to build

the sending list and decide the order of nodes in III-C and the

detailed DCRD routing strategy in III-D.

B. Recursive Computation Process

The recursive computation process starts when a subscriber

S subscribes to a topic from publisher P . Initially, the

parameters of node S regarding S itself is < 0, 1 > since S

is already the destination, and has probability 1 to reach the

destination with 0 delay. S then shares its parameters < 0, 1 >

with its immediate neighbors. Other nodes who have received

the parameters regarding subscriber S from its neighbors start

the computation of its own < d, r > distributively.

We again use the example in Figure 1 where X has n

neighbors on the sending list labeled from 1 to n with node

1 on top of the list and node n on the bottom. Given

the parameters < di, ri > of neighboring node i and the

parameters αXi, γXi of link X → i, for 1 ≤ i ≤ n, we

define < di
X , ri

X > as the expected delay and the expected

delivery ratio for node X to reach subscriber S via neighbor



4

i, respectively. For the ith neighbor, < di
X , ri

X > can be

calculated as follows:

di
X = αXi + di

ri
X = γXiri (2)

where, di
X is the sum of the link delay αXi and the expected

delay di from node i to S; ri
X is the product of γXi and ri.

Given the computation result of < di
X , ri

X > for any neigh-

bor i on the sending list, node X finally calculates its own

parameters dX , rX . Given the sending list of {1, 2, · · · , n},
X tries node 1 first and the packet is delivered with expected

delay d1
X and probability r1

X ; if it fails, X tries node 2 and

the packet is delivered with expected delay d1
X + d2

X and

probability (1 − r1
X)r2

X , and so on. The general equation for

X to calculate < dX , rX > is given below:

dX =

∑n

i=1[(
∑i

j=1 d
j
X)(ri

X

∏i−1
j=1(1− r

j
X))]

1−
∏n

i=1(1− ri
X)

rX = 1−
n∏

i=1

(1− ri
X) (3)

where the numerator of dX is the sum of the product of delay

and the corresponding probability that the packet is delivered

via neighbor i; the denominator of dX is rX , which is the

probability that the packet is delivered successfully via at least

one neighbor.

Using Eq.3, each node can calculate its < d, r > parameters

as long as it receives the parameters from its neighbors and

decides the sending list. It is easy to find that Eq.3 has linear

computation complexity Θ(n) with n being the total number

of neighbors on the sending list.

C. Construction of Sending List

Suppose X has a number of neighbors, and the ith

neighbor’s parameter regarding subscriber S is computed as

< di, ri >, which is shared with X . For any neighbor i, X

selects this neighbor on its sending list towards subscriber S

only if di < DXS , i.e., X only includes those nodes on the

sending list towards subscriber S who are expected to deliver

the packets to S within the delay requirement. It can be seen

from Eq.3 that the ordering of the nodes on the list does not

affect the delivery ratio rX , but it affects the computation of

dX which affects the performance significantly since dX is

the expected time that node X delivers the packet to S. It is

thus important to sort the nodes in a way that can minimize

dX so that the expected delay is reduced. Such an optimal

node ordering is given by Theorem 1:

Theorem 1 Suppose node X has n neighbors on the sending

list towards subscriber S which are labeled from 1 to n.

The expected delay di
X and expected delivery ratio ri

X from

X to S via neighbor i can be calculated by Eq.2. Suppose
d1

X

r1

X

≤
d2

X

r2

X

≤ ... ≤
dn

X

rn

X

. Then {1,2,...,n} is the sending list that

minimizes the expected delay dX .

Proof: Suppose {1,2,...,n} is already the optimal node

sequence that minimize the expected delay dX . We prove

that
d1

X

r1

X

≤ d2

X

r2

X

≤ ... ≤ dn

X

rn

X

is both sufficient and necessary

condition for the optimality of {1,2,...,n}.

From Eq.3 we see that the ordering of nodes affects

numerator only. We use Y to denote the numerator and expand

it as follows:

Y = d1
Xr1

X + (d1
X + d2

X)(1− r1
X)r2

X + · · ·+

(d1
X + d2

X + ... + dn
X)(

n−1∏

i=1

(1 − ri
X))rn

X

= d1
Xr1

X + (d1
X + d2

X)(1− r1
X)r2

X + · · ·+

(d1
X + d2

X + ... + dn
X)(

n−1∏

i=1

(1 − ri
X))[1 − (1− rn

X)]

= d1
X + d2

X(1− r1
X) + · · ·+ dn

X(

n−1∏

i=1

1− ri
X)

−(

n∑

i=1

di
X)

n∏

i=1

(1− ri
X) (4)

Since {1,2,...,n} is already the sequence that minimizes dX ,

and thus minimizes Y , switching the position of node k and

k + 1 in the sequence for any 1 ≤ k ≤ n− 1 should yield an

equal or larger d′X and Y ′. Comparing the difference on Eq.4

yields:

d′X − dX ≥ 0⇔ Y ′ − Y ≥ 0

⇔
k−1∏

i=1

(1− ri
X)[dk+1

X + (1 − rk+1
X )dk

X

−dk
X − (1 − rk

X)dk+1
X ] ≥ 0

⇔ rk
Xdk+1

X − rk+1
X dk

X ≥ 0

⇔
dk+1

X

rk+1
X

≥
dk

X

rk
X

(5)

Since Eq.5 holds for any 1 ≤ k ≤ n − 1, the condition
d1

X

r1

X

≤ d2

X

r2

X

≤ ... ≤ dn

X

rn

X

is both sufficient and necessary for

the optimality of sequence {1,2,...,n} for minimizing dX .

D. Dynamic Routing

Based on the distributed computation process in III-B and

the sending list construction in III-C, each broker follows

Algorithm 1 to set up the sending list for subscriber S.

Initially, the sending list of X for S is empty (Line 1). After

receiving < d, r > parameters from neighbors (Line 2), the

ones whose expected delay can meet the delay requirement

are added into the sending list and the corresponding expected

delay and delivery ratio to S via these nodes < di
X , ri

X > are

calculated based on Eq.2 (Line 3 to Line 8). Then the nodes on

the sending list are sorted in increasing order of
di

X

ri

X

(Line 9).

Based on the sending list, X finally computes its < dX , rX >

and shares them with its neighbors (Line 10 and 11).



5

Algorithm 1 Dynamic Routing Setup at Node X

1: List ← ∅
2: Receiving < d, r > parameters from l neighbors for S

3: for i← 1 to l do

4: if di < DXS then

5: Add i into List

6: Calculate di
X , ri

X based on Eq.2

7: end if

8: end for

9: Sort the nodes in List in increasing order of
di

X

ri

X

10: Calculate dX , rX based on Eq.3

11: Share < dX , rX > with all neighbors

Each node uses the sending list for routing the packets

toward each subscriber. To avoid possible forwarding loops,

(e.g., two brokers are on the sending list of each other),

each packet contains not only the information of multiple

subscribers but also the brokers that has been on the routing

path. When node X receives a packet from a neighbor, it finds

the next-hop receiver from the sending list of each subscriber.

A node is selected to be the next-hop receiver from the sending

list if and only if it is the first node in the node sequence that

has not been on the routing path for this packet. If a node is the

next-hop receiver on the sending lists of multiple subscribers,

only one copy of the packet is sent.

The hop-by-hop acknowledgement (ACK) is used in

DCRD. With hop-by-hop ACKs, senders immediately know

the reception status of its neighboring nodes and can switch

to other neighbors on the sending list quickly if the packet

is delayed or lost, increasing the probability of delivering the

packet in time. The expected link delay αij can be used for

a sender i to wait for the ACK before sending the packet to

the next node on the sending list. If a node has tried all the

nodes on the sending list but the packet is still not delivered,

it adds itself into the routing path information of the packet

and reroutes the packet to the upstream node from which it

receives the packet. The upstream node can be easily found by

checking the routing path information recorded in the packet,

and thus there is no need to store the state information for

every packet at each node. The upstream node then finds the

new next-hop node on its sending list (the first node that has

not been on the routing path), trying to deliver the packet via

the new next-hop node.

Algorithm 2 shows the forwarding scheme implemented

at node X . Upon receiving a packet from the immediate

neighbor Y (Line 1), X first sends an ACK back to Y (Line

2), and gets the l destinations S1...Sl (Line 3). Initially the

processing flags for all subscribers are set to 0 (Line 4 to

6). X finishes processing Si (flag[i] = 1) if and only if Si

receives an ACK from the downstream next-hop receiver of

Si, or X has tried all nodes on the sending list but fails to

deliver the packet. For the latter case X reroutes the packet to

its upstream node obtained from the routing path information

Algorithm 2 Dynamic Routing Scheme at Node X

1: Receive a packet from Y

2: Send ACK to Y

3: Get the destinations S1...Sl

4: for i← 1 to l do

5: flag[i]← 0 //flag is 1 if X finishes processing Si

6: end for

7: while (∃Si s.t. flag[i] = 0) do

8: for (any Si s.t. flag[i] = 0 and no ACK awaiting ) do

9: k ← the first qualified node on the sending list of Si

10: if (k not found) then

11: k ← upstream node of X from the routing path

12: end if

13: dest← {Si} //add Si into the destination

14: for j ← 1 to l do

15: if ((flag[j] = 0) and (next-hop node is also k))

then

16: //find other subscribers who has the same next-

hop node as k

17: dest← {dest, Sj} //add Sj into destination

18: end if

19: end for

20: Add X into the routing path

21: Send packet to k with destinations dest

22: Set a timer and cache the packet for αXk of time

23: if (ACK received from k before timer expires) then

24: for (any subscriber Sj in dest) do

25: flag[j]← 1
26: end for

27: end if

28: end for

29: end while

of the packet.

After initializing the flags, X starts to find the next-hop

downstream receivers from the sending lists of the subscribers

that still needs to be processed (Line 7 to 8). We use k to

denote the downstream next-hop receiver found for Si (Line

9). A qualified k should be the first node on the sending list

of Si that has not been on the routing path. If there is no

qualified next-hop node k found for Si, meaning Si cannot

be reached through X , X has to reroute the packet to its

upstream node, which is also denoted as k (Line 10 to Line

12). It is worth noting that Y can be either the upstream node

of X such that X has not been on the routing path before

receiving this packet from Y , or the downstream node of

X that Y fails to deliver the packet to S and reroutes the

packet back to X . As a result, X needs to read the routing

path information to find what its upstream node is. After k is

found as either the downstream node from the sending list or

the upstream node from the routing path, Si is added to the

destination information of the new packet to be sent to k (Line

13). X further checks if other destinations use k as the next-



6

hop receiver and adds them into the destination information if

they do (Line 14 to 19). Then X adds itself into the routing

path (Line 20) before sending a packet to k (Line 21) with

the destination information including all nodes for which k

is their next-hop receiver. X caches the packet and waits for

an ACK from k acknowledging the reception of the packet at

k. If there is an ACK received in αXk of time, X sets the

processing flag of all destinations covered by this packet to 1

(Line 23 to 26). Otherwise the “while” loop continues until

all the l subscribers are processed with flag set to 1.

IV. EVALUATION

This section shows the performance evaluation of DCRD

in simulations with various settings.

A. Simulation Setup

We evaluate the performance of DCRD in various topolo-

gies. Our overlay network consists of 20 broker nodes. For

a given link degree, we randomly choose the neighboring

nodes. For each link, we randomly choose the delays ranging

from 10 ms to 50 ms; this range is chosen based on the

AT&T measurements [16]. To simulate dynamic network

environment, we change the network condition once every

second, i.e., we inject link failures into randomly chosen links

that will cause one second of packet loss. Note that each

node monitors network conditions only every 5 minutes, while

the network conditions change more frequently. We repeat

the experiments with different failure probability, Pf , ranging

from 0 to 0.1, incremented by 0.02.

Since DCRD is designed with the intention to deal with link

failures, we set the packet loss rate, Pl, of each link in most

simulations to 0.0001, which is relatively small compared with

Pf . This setting helps evaluate how DCRD performs when it

reroutes the packet and bypasses failures. The value of m,

which is the number of transmissions a node tries before

switching to another node, is set to 1 since with a much higher

Pf , a missing ACK has higher probability to be caused by a

failure than a packet loss. We provide evaluation for Pl and

m in Section IV-D7.

Our publishers and subscribers are deployed on 20 broker

nodes. We use 10 topics and deploy 10 publishers on 10 ran-

domly chosen broker nodes. (In a real deployment, it is likely

that publishers and subscribers are on the nodes other than the

broker nodes and join the network by connecting through a

nearby broker node. In our simulation, we place publishers and

subscribers on the broker nodes for simplicity.) Each publisher

sends packets at the rate of 1 packet/s. This is a typical rate

in air surveillance networks, where pub/sub systems deliver

messages. For example, in ADS-B, an aircraft (publisher)

broadcasts its location once per second on average [17]. To

place subscribers, we first randomly choose a probability, Ps,

in the range of 0.2 and 0.6 for each topic. Then, a subscriber

for this particular topic is placed at a node with the probability

of Ps. In QoS-aware pub/sub systems, a subscriber specifies

the delay requirement. As a hint, the system may provide

the typical delay from the publisher to subscriber, and the

subscriber then may choose the requirement based on the

typical delay. For our simulation, we set the delay requirement

to be the three times the shortest-path delay between the

publisher and the subscriber.

We repeat our experiments in 10 different topologies. Each

experiment has a simulation time of two hours.

B. Comparison

There are many pub/sub systems using tree-based topolo-

gies as routing solutions [7], [8], [18], [19]. We compare the

performance of DCRD with two typical trees, a multipath

approach as well as an oracle performance tree that provides

the performance upper bound, as described as follows:

1) Most Reliable Tree (R-Tree): routing tree with the

shortest-hop-count path between each publisher and

subscriber

2) Shortest-Delay-Path Tree (D-Tree): routing tree with

the shortest-delay path between each publisher and

subscriber

3) Oracle Performance Tree (ORACLE): routing tree with

the shortest-delay path avoiding any failures since the

condition of entire network is known. This oracle (or op-

timal) solution provides the performance upper bound.

4) Multipath Solution (Multipath): the design in which

publishers send duplicate packets for every subscriber

to increase the chance of sucessful delivery. In our

simulation, a single packet to a single subscriber is sent

through two paths: one shortest delay path and another

path that selected from the top 5 shortest delay paths

that has the fewest overlapping links with the shortest

delay path.

C. Performance Metrics

The following performance metrics are used to evaluate our

DCRD design:

1) Delivery Ratio: the percentage of packets that are de-

livered to subscribers. If a single packet has multiple

subscribers, 100% delivery ratio means all subscribers

received the packet successfully. Note that this ratio

includes both the packets that are delivered within and

after the delay requirement.

2) QoS Delivery Ratio: the percentage of packets that are

delivered to subscribers within the delay requirement.

Similar to the delivery ratio, if a single packet has

multiple subscribers, 100% QoS delivery ratio means

all subscribers received the packet within the delay

requirement.

3) Packets Sent/Subscribers: the total number of packets

sent by any node divided by the total number of sub-

scribers. For example, when a packet traverses a path

with two hops (links), the count for this packet is two.

This serves as an indicator of the traffic generated by

different approaches.



7

0 0.02 0.04 0.06 0.08 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

Failure Probability

D
e

liv
e

ry
 R

a
ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(a) Delivery Ratio

0 0.02 0.04 0.06 0.08 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

Failure Probability

Q
o

S
 D

e
liv

e
ry

 R
a

ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(b) QoS Delivery Ratio

0 0.02 0.04 0.06 0.08 0.1
0.5

1

1.5

2

2.5

3

3.5

4

Failure Probability

P
a

c
k
e

ts
 S

e
n

t 
/ 

S
u

b
s
c
ri
b

e
r

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(c) Packets per Subscriber

Figure 2. Performance Comparison in Fully-Meshed Networks

0 0.02 0.04 0.06 0.08 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

Failure Probability

D
e

liv
e

ry
 R

a
ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(a) Delivery Ratio

0 0.02 0.04 0.06 0.08 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

Failure Probability

Q
o

S
 D

e
liv

e
ry

 R
a

ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(b) QoS Delivery Ratio

0 0.02 0.04 0.06 0.08 0.1
0.5

1

1.5

2

2.5

3

3.5

4

Failure Probability

P
a

c
k
e

ts
 S

e
n

t 
/ 

S
u

b
s
c
ri
b

e
r

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(c) Packets per Subscriber

Figure 3. Performance Comparison in Overlay Networks with Degree 5

3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Node Degree

D
e

liv
e

ry
 R

a
ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(a) Delivery Ratio

3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Node Degree

Q
o

S
 D

e
liv

e
ry

 R
a

ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(b) QoS Delivery Ratio

3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

Node Degree

P
a

c
k
e

ts
 S

e
n

t 
/ 

S
u

b
s
c
ri
b

e
r

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(c) Packets per Subscriber

Figure 4. Performance Comparison in Overlay Networks with Different Connectivities (Pf = 0.06)

D. Performance Evaluation

1) Fully-Meshed Topology: We first consider a full-mesh

topology, where every pair of nodes is directly connected by

an overlay link. Figure 2(a) shows the delivery ratio of the

four designs. For both DCRD and ORACLE, the delivery ratio

is always 100% across all failure probabilities. The delivery

ratios of D-Tree and R-Tree drop as the failure probability

increases. This is because both tree-based approaches do not

reroute the packets when a failure occurs. R-Tree has higher

delivery ratio than D-Tree because R-Tree is built such that

there is minimum number of hops between each publisher-

subscriber pair, and thus is more robust to link failures than

D-Tree. Multipath delivers more packets than the two trees,

at the cost of sending duplicate packets through different

paths. However, since it does not reroute packets as well,

the delivery ratio drops to 95% as the failure probability

increases to 0.1. Figure 2(b) shows the QoS delivery ratio.

DCRD delivers about 96.7% of packets within the delay

requirement when Pf = 0.1 and the percentage is higher

for smaller probabilities. This is close to ORACLE, whose

percentage is 99.6% for Pf = 0.1. The other three approaches

suffer from link failure and their QoS ratios are almost the



8

0 50 100 150
0.7

0.75

0.8

0.85

0.9

0.95

1

Network Size

D
e

liv
e

ry
 R

a
ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(a) Delivery Ratio

0 50 100 150
0.7

0.75

0.8

0.85

0.9

0.95

1

Network Size

Q
o

S
 D

e
liv

e
ry

 R
a

ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(b) QoS Delivery Ratio

0 50 100 150
0.5

1

1.5

2

2.5

3

3.5

4

Network Size

P
a

c
k
e

ts
 S

e
n

t 
/ 

S
u

b
s
c
ri
b

e
r

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

(c) Packets per Subscriber

Figure 5. Effect of different network sizes. The node degree is 8 and Pf = 0.06. The x-axis shows the number of nodes.

same as the delivery ratios. This is mainly because they

do not dynamically explore alternate paths in case of link

failures. Figure 2(c) shows the total number of packets sent per

subscriber. R-Tree sends only one packet per subscriber since

it can always use the direct link in the fully-meshed network.

The other four approaches introduce more traffic than R-Tree

and Multipath sends the most packets. When Pf = 0.1, DCRD

introduces about 20% more traffic than D-Tree and ORACLE,

but that is still less than 50% of the traffic introduced by

Multipath. In this full-mesh topology, DCRD delivers 15%

more packets than D-Tree and 11% more packets than R-

Tree, when Pf = 0.1, while generating 20% extra traffic. It

also delivers 5% more packets than Multipath without having

to send duplicate packets, a saving of more than 50% of the

traffic.

2) Mesh with Reduced Connectivity: We compare the per-

formance of DCRD with other approaches when the overlay

network has reduced connectivity. We decreased the link

degree of each node to five. Figure 3(a) shows that the delivery

ratio of DCRD is similar to the fully-meshed network case,

while that of D-Tree, R-Tree and Multipath all dropped by

5%. With less connectivity, the number of hops between the

publisher and subscribers becomes larger, and thus there is

a higher chance that the path between the publisher and the

subscriber gets disconnected due to a link failure.

Figure 3(b) shows the QoS delivery ratio of DCRD dropped

by 2% compared with the fully-meshed network due to the

reduced degree of connectivity. However, DCRD still delivers

within the delay requirements 10% more packets than R-Tree,

15% more than D-Tree and 5% more than Multipath.

Figure 3(c) shows the number of packets sent per subscriber

and as expected, all the values are higher than fully-meshed

networks. R-Tree and D-Tree send fewer packets than DCRD

because they do not explore alternate paths and just stop

sending when a packet is lost in the middle of a path due

to a link failure, resulting in a low delivery ratio and low

QoS delivery ratio. This also explains why Multipath sends

fewer packets as the failure probability becomes larger. In

the worst case with Pf = 0.1, DCRD sends around 40%

more packets than D-Tree and R-Tree, while delivering 15%

more packets than R-Tree, 20% more packets than D-Tree

and 10% more packets than Multipath. It still saves 40% of

the traffic compared with Multipath. Compared to ORACLE,

DCRD sends 25% more packets in the worst case because it

first needs to try a path in order to discover a failure, while

ORACLE knows which paths are (and will be) experiencing

failures and thus chooses the path that would deliver the

packet successfully to the subscriber.

3) Different Connectivity: We change the node degree from

3 to 10 in simulation with the same failure probability 0.06.

Figure 4(a) and Figure 4(b) show that as long as the node

degree is 5 or bigger, DCRD delivers more than 96% of

the packets while meeting the delay requirement. The QoS

delivery ratio of DCRD is only 3% lower than ORACLE.

The other three solutions suffer from link failures, and the

delivery ratios are about 10% less than DCRD for the two

tree solutions, and 5% less for Multipath. For the degree

of 4, DCRD still delivers about 98% of packets, but QoS

delivery ratio is reduced to 94%. For the degree of 3, both the

delivery ratio and QoS delivery ratio of all the five approaches

become lower than 85% because when the network is sparsely

connected, there may not be a path that is not experiencing a

failure and is shorter than QoS delay requirement. Figure 4(c)

shows the number of packets sent per subscriber. DCRD sent

25% more packets when the node degree is 4 compared to

ORACLE.

4) Different Network Sizes: We change the network size to

{10,20,40,80,120,160} nodes to see the scalability of DCRD.

In the simulation, the failure probability is set to 0.06 and

the node degree is 8. Figure 5 shows that the performance

degrades for all the five designs as the network becomes larger.

This is because with a fixed node degree, the diameter of the

network increases, the number of hops between each publisher

and subscriber pair also increases. As a result, it is more likely

for R-Tree and D-Tree to fail since they have more hops on

the routing paths. The QoS delivery ratio of DCRD, however,

is still around 5% lower than ORACLE when Pf is 0.1, with

33% more packets sent. As the network size increases, from 10

to 160, DCRD introduces 60% more traffic than the two tree-

based solutions, meaning that with a larger network size and



9

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

1

QoS Requirement

Q
o
S

 D
e
liv

e
ry

 R
a
ti
o

 

 

DCRD

R−Tree

D−Tree

ORACLE

Multipath

Figure 6. Effect of different level of QoS delay requirements. The node
degree is 8 and Pf = 0.06.

relatively less connectivity, DCRD reroutes packets through

longer paths to bypass the failure links. However, the cost is

still less than that of Multipath, which sends duplicate packets

at the beginning.

5) Different QoS Delay Requirements: Figure 6 shows the

QoS delivery ratio in the 20-node networks with different level

of QoS delay requirement. The failure probability is set to

0.06 and the node degree of the networks is 8. The delay

requirement for each publisher-subscriber pair is specified as

the multiple of the shortest path delay. Prior to this experiment,

we used the factor of three, and we vary this factor in this

experiment. The x-axis shows this multiplication factor.

When the multiplication factor increases from 1.5 to 2,

the QoS delivery ratio of DCRD increases by 4%; when the

multiplication factor increases from 2 to 3, the QoS delivery

ratio of DCRD increases by another 4%. Almost 100% of the

packets can be delivered with a delay requirement shorter than

4 times of the shortest path delay. Even for a multiplication

factor of 1.5, more than 90% of the packets are delivered by

DCRD, meeting the delay requirement. For R-Tree and D-

Tree, since they suffer from link failure, the QoS delivery

ratio almost remains the same as the multiplication factor

increases. Only the QoS delivery ratio of R-Tree increases

by 5% when the multiplication factor increases from 1.5 to

2. This is because with a looser delay requirement, there

is higher chance that the most reliable path can meet the

deadline. For Multipath, however, we see that it delivers within

the QoS requirement 5% more packets than DCRD when the

requirement is 1.5 times of the shortest path delay. As the

requirement becomes looser, DCRD delivers more packets

within requirement than Multipath, and the QoS delivery ratio

of Multipath almost remains the same due to link failures.

We conclude from the simulation that when there are very

urgent tasks, Multipath delivers more packets that can meet

the deadline at the cost of doubling the internet traffic. If

there is relatively loose requirement (e.g., 2∼3 of the shortest

delay path), DCRD performs better and introduces much less

internet traffic.

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Actual Delay / Delay Requirement

C
D

F

Fully−Meshed Topology

Node Degree 8

Figure 7. CDF of Packets that have missed deadline. Pf = 0.06.

10
−4

10
−3

10
−2

10
−1

0.8

0.85

0.9

0.95

1

Packet Loss Rate

Q
o
S

 D
e
liv

e
ry

 R
a
ti
o

 

 

DCRD, m = 1

DCRD, m = 2

R−Tree, m = 1

R−Tree, m = 2

D−Tree, m = 1

D−Tree, m = 2

Multipath, m = 1

Multipath, m = 2

Figure 8. Effect of different packet loss rate Pl and different number of
transmissions through each link m. The node degree is 8 and Pf = 0.01.

6) Delay Statistics: We show in Figure 7 the cumulative

distribution of those packets in DCRD who miss the delay

requirement in 20-node networks with fully-meshed topology

and with degree of 8. The x-axis is the actual delay divided by

the delay requirement. (This value starts from 1 because only

those messages that have violated the delay requirement are

included in the statistics.) It can be seen from the figure that

for both topologies, around 50% of the packets that missed

the deadline arrived within 25% of delay requirement from

the deadline. Also, around 78% of the packets that missed the

deadline took less than 50% longer than the delay requirement

in fully-meshed networks, and this number drops to 70%

in networks with degree 8. This is because with reduced

connectivity, it is less likely to find an alternate path with short

delay. However, we still find that 80% of the packets are less

than 75% longer than the delay requirement. These results

indicate that with DCRD, even those packets who missed the

deadline still arrived within a short delay.

7) Different Packet Loss Rate and m: We vary the packet

loss rate Pl from 10−1 to 10−5 in 20-node networks with

node degree of 8 and Pf = 0.1. The QoS delivery ratio of

DCRD, R-Tree, D-Tree and Multipath for different m values

are shown in Figure 8. When Pl ≤ 10−3, DCRD has about

0.5% more packets delivered within the delay requirement



10

when m = 1 compared with m = 2, i.e., switching to the next

node is more delay-efficient compared with retransmission on

the same link. This is because Pl is much smaller than Pf , and

a missing ACK is more likely caused by link failure other than

packet loss. Thus, it is faster to try the next path immediately

rather than first try retransmissions (which is futile in this

case) and then look for an alternate path. For R-Tree, D-Tree

and Multipath, the QoS delivery ratio for different m values

when Pl ≤ 10−3 does not change since Pl is too small to

make the retransmissions affect the result. When Pl becomes

equal or larger than Pf , the QoS delivery ratio for different

m values of DCRD become close, indicating that the packet

loss can be recovered by both rerouting and retransmission.

For R-Tree, D-Tree and Multipath, a 1%∼2% increasing on

QoS delivery ratio can be easily seen from the figure when m

increases from 1 to 2. This is because as Pl increases, there

is a higher chance that a packet is lost in a good link, and

such a loss can be recovered from retransmissions.

V. CONCLUSION

This paper proposes DCRD, a dynamic routing scheme

for overlay pub/sub systems that provides delay-aware, reli-

able message delivery. Different from traditional approaches,

which utilizes a fixed routing topology to forward pack-

ets, DCRD dynamically switches between different next-hop

downstream nodes to quickly bypass link failures and to

increase the chance of delivering the packets within the delay

requirement. Each node distributively calculates the expected

delay and delivery ratio regarding each subscriber and then

builds a sending list consisting of all possible routes, sorted in

a way that minimizes the expected delay. Routing follows this

sending list and delivery is guaranteed as long as there exists at

least one path from publisher to subscriber. DCRD is evaluated

in simulations with various network settings and is shown to

outperform the existing tree-based approaches and multipath

approach; DCRD provides reliably delivery and delivers 10%,

15%, and 5% more messages on-time than R-Tree, D-Tree

and Multipath approach, respectively. DCRD is also shown

to closely approach the oracle-based tree performance by

providing more than 98% QoS delivery ratio for link failure

probabilities below 4% and more than 95% QoS delivery ratio

for almost all other settings.

This study focused on the evaluation of the dynamic routing

algorithm under different loss and link failure conditions.

Work is also underway to evaluate DCRD performance in

the presence of node failures. With node failures there is the

potential for simultaneous link failures and long outages that

render one or more destinations unreachable for a given topol-

ogy. Thus, DCRD might need to incorporate other strategies,

such as dynamic topology construction, to maintain good la-

tency performance, while still providing reliable delivery. The

simulations presented in this study provide good insight into

how a topology might be constructed for a real deployment.

In particular, the results for an overlay with node degree

of 5 or greater are not appreciably different from the full

mesh results, suggesting that sparsely connected topologies

are viable for real deployments. Parallel efforts to implement

DCRD in a candidate messaging middleware system [20] and

evaluate DCRD’s performance in a real deployment are under

development as well.

REFERENCES

[1] B. Blakeley, H. Harris, and R. Lewis, Messaging and queueing

using the MQI. New York, NY: McGraw-Hill, Inc., 1995. [Online].
Available: http://portal.acm.org/citation.cfm?id=SERIES9694.206786

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114–131, June 2003.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient Overlay Networks,” in Proc. 18th ACM SOSP, 2001, pp.
131–145.

[4] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-Path vs.
Multi-Path Overlay Routing,” in Proc. of ACM IMC, 2003, pp. 91–100.

[5] T. Nguyen and A. Zakhor, “Path diversity with forward error correction
(pdf) system for packet switched networks,” in IN PROCEEDINGS OF
IEEE INFOCOM, 2003, pp. 663–672.

[6] L. Lao, J.-H. Cui, M. Gerla, and D. Maggiorini, “A Comparative
Study of Multicast Protocols: Top, Bottom, or In the Middle?” in
INFOCOM’05, 2005.

[7] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. O.
Jr., “Overcast: Reliable Multicasting with an Overlay Network,” in
OSDI’00, 2000.

[8] S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and S. Khuller,
“Construction of an Efficient Overlay Multicast Infrastructure for Real-
time Applications,” in INFOCOM’03, 2003.

[9] G. I. Kwon and J. W. Byers, “ROMA: Reliable Overlay Multicast with
Loosely Coupled TCP Connections,” in INFOCOM’04, 2004.

[10] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg, “Content-
Based Publish-Subscribe over Structured Overlay Networks,” in
ICDCS’05, 2005.

[11] R. E. Strom, G. Banavar, T. D. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. C. Sturman, and M. Ward, “Gryphon: An Information
Flow Based Approach to Message Brokering,” 1998.

[12] M. Onus and A. W. Richa, “Minimum Maximum Degree Publish-
Subscribe Overlay Network Design,” in INFOCOM’09, 2009.

[13] M. Junginger and Y. Lee, “A Self-Organizing Publish/Subscribe Mid-
dleware for Dynamic Peer-to-Peer Networks,” IEEE Network, vol. 18,
no. 1, pp. 38–43, 2004.

[14] J. Wang, W. Yurcik, Y. Yang, and J. Hester, “Multi-Ring Techniques for
Scalable Battlespace Group Communications,” IEEE Communications
Magazine, vol. 43, no. 11, 2005.

[15] G. Tan, S. Jarvis, and D. Spooner, “Improving Fault Resilience of
Overlay Multicast for Media Streaming,” in DSN’06, 2006.

[16] “AT&T Network,” http://ipnetwork.bgtmo.ip.att.net.
[17] A. Cruise, “ADS-B for next gen ATC,” Airside International, September

2008.
[18] Z. Li and P. Mohapatra, “QRON: QoS-aware Routing in Overlay

Networks,” IEEE Journal on Selected Areas in Communications, vol. 22,
no. 1, pp. 29–40, 2004.

[19] A. Riabov, Z. Liu, and L. Zhang, “Overlay Multicast Trees of Minimal
Delay,” in ICDCS’04, 2004.

[20] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-Oriented
Middleware with QoS Awareness,” in ICSOC-ServiceWave’09, 2009.


