
Efficacy of techniques for responsiveness
in a wide-area publish/subscribe system

Minkyong Kim
IBM Watson Research

minkyong@us.ibm.com

Kyriakos Karenos
∗

Microsoft U.K.
kyriak@microsoft.com

Fan Ye
IBM Watson Research
fanye@us.ibm.com

Johnathan Reason
IBM Watson Research

reason@us.ibm.com

Hui Lei
IBM Watson Research
hlei@us.ibm.com

Konstantin Shagin
IBM Haifa Research
konst@il.ibm.com

ABSTRACT
As the multiplicity of organizational domains often span across
nations, or even continents, the need for federated communica-
tions across domains becomes paramount. Consequently, messag-
ing middleware has become critical towards enabling cross-domain,
wide-area federations. Cross-domain federation has placed increased
emphasis on the need for the messaging system to provide Qual-
ity of Service (QoS), particularly with respect to responsive deliv-
ery of messages. Responsiveness, or timely delivery of messages,
is critical in real-world services, such as a smart utility grid sys-
tem. This study explores the efficacy of providing responsiveness
in wide-area publish/subscribe messaging by evaluating several key
techniques for managing latency. Specifically, this paper evalu-
ates the following techniques: proactive best-path routing, reactive
QoS-aware routing, and multipath routing. We present Harmony, a
QoS-aware publish/subscribe middleware system, that adapts these
techniques in order to provide responsive and high availability mes-
saging. This study seeks to provide an in-depth understanding of
how different techniques to manage responsiveness affect the end-
to-end performance under various network conditions.

1. INTRODUCTION
As the organizational domains often span across nations, the

need for federated communication across domains becomes ex-
tremely important, and Message-Oriented Middleware (MOM) has
become critical towards enabling cross-domain, wide-area federa-
tion. With the advent of real world-aware applications, there has
been increasing emphasis on responsiveness declared by a level of
QoS provided by MOM. Two of the most common MOM paradigms
are message queuing [4] and publish/subscribe (pub/sub) messag-
ing [13, 7]. Message queuing provides buffering between pairs
of hosts over point-to-point paths, an approach that is most suit-
able for applications requiring persistence, but less amenable to
applications requiring responsiveness. In pub/sub messaging, sub-

∗This work was done while this author was at IBM.

.

scribers specify their interest in messages typically by requesting
a type of messages or by requesting messages that have certain at-
tributes based on the message contents. When a publisher sends a
message, subscribers who have registered their interest in the mes-
sage receive it asynchronously. Pub/sub model follows a many-to-
many communication pattern, allowing for a decoupling between
publishers and subscribers, while the queuing model follows a one-
to-one model. It is this decoupling nature of pub/sub that makes
it more suitable for applications requiring responsiveness, because
loose coupling allows for rapid path re-configuration when adverse
network conditions are detected.

In this paper we investigate and report on the efficacy of using
different techniques to provide responsive, wide-area messaging by
presenting an in-depth study of a QoS-aware messaging system,
Harmony [21]. Harmony is a wide-area, pub/sub system for fa-
cilitating the interconnection of disparate messaging domains over
large geographic areas through an overlay network of brokers. Har-
mony is targeted for wide-area networks (WANs), where the path
characteristics change dynamically and failures are non-negligible.
A distinguishing feature of Harmony is the holistic provisioning of
predictable QoS by effectively addressing network dynamics and
heterogeneity. Separately, for each message topic, Harmony al-
lows to specify performance requirements (i.e., latency, through-
put), availability and reliability models, and security constraints.
Harmony delivers messages across autonomously administered do-
mains, while respecting the above requirements end-to-end.

To provide QoS-aware messaging, Harmony employs three dis-
tinct path selection techniques: 1) periodically search for the low-
est latency path (proactive best-path), 2) upon detecting a viola-
tion of the latency constraint, search for a better path (reactive
QoS-aware), and 3) send topics across multiple paths simultane-
ously (multipath). The main contribution of this paper is to present
empirical results that quantify the efficacy of using these differ-
ent approaches to path selection for QoS awareness in a wide-area,
pub/sub system. To the authors’ knowledge, this is the first study
that seeks to categorically identify under what network conditions
these different techniques are applicable and for each technique,
quantify the benefits (with respect to latency and loss) and cost
(with respect to traffic). This paper provides a quantitative assess-
ment of Harmony’s techniques that provide responsive messaging,
even under adverse network dynamics, including path performance
degradation and path failures. In summary, these results demon-
strate that robust QoS awareness can be achieved by employing the
appropriate technique based on the network conditions.

Harmony has been explored for various real-world applications,
including the wide-area distribution of air surveillance data and

demand-response management in smart electric grids. Air surveil-
lance data, as measured by radar, needs to be delivered to various
US federal agencies such as FAA, DoD, and DHS in a timely man-
ner. These agencies typically belong to different network domains
and are located in multiple cities. Thus, it is critical to provide a
messaging middleware that delivers messages seamlessly over mul-
tiple network domains and is responsive to WAN dynamics, while
being cognizant of delay performance. We are also engaged in a
project to provide responsive MOM for smart electric grid com-
munication. In this application, a regional electricity generation
provider together with several regional utilities seek to improve
generation efficiency through better load forecasting and by offer-
ing price incentives to customers who are willing to allow intelli-
gent management of their load. In a macro sense, pricing signals
flow from the generation provider to the utilities to the loads, and
demand signals flow in the reverse direction. Control algorithms
at each junction of the signal flow expect Harmony to manage the
delivery performance of these signals, per some QoS requirements.

2. SYSTEM DESIGN
Harmony uses overlay networks to construct a network on top of

the physical IP topology and divert the flow of data traffic through
one or more broker nodes. The application endpoint nodes, such
as sensors, cluster themselves and form a domain. In each domain,
there is at least one broker node and the endpoint nodes may use the
pub/sub messaging by connecting to the local broker node. The use
of overlay middleware to extend application-layer control over the
available physical topology has, in fact, been utilized in the design
of many existing systems [1, 2, 11, 14, 17]. Our approach adopts
the existing concept of the overlay, but further incorporates vari-
ous techniques to provide a QoS-aware messaging service over the
wide-area network. The goal of this paper is to study the benefits
gained by enabling these different techniques. We aim to provide
insights into how different techniques can be combined to meet
the needs of applications. More specifically, we have incorporated
three major path selection techniques in Harmony for enhancing
message delivery using multi-hop overlay paths. First, to address
dynamic changes in the underlying network, we periodically check
the performance of the possible overlay paths and switch the ex-
isting path to the best-path. Second, to accommodate the preser-
vation of the applications’ QoS, we monitor the individual hops to
identify QoS violations and react if the current path violates the re-
quired QoS. Finally, we explore multiple parallel paths (multipath)
to improve reliability and performance of message delivery.

2.1 Proactive best-path routing
The performance of Internet paths can change dynamically. De-

lays between Internet endpoints can vary significantly as a result of
congestion, Internet path changes, disconnections and processing
delays. To adapt to this dynamic behavior, Harmony brokers mon-
itor the delay incurred over individual overlay links by exchanging
ping-style probes. Each broker then computes the average value
using an Exponentially Weighted Moving Average (EWMA), with
the weight of 0.25 on the new measurements, and broadcasts the
information to neighboring brokers. A publishing broker then uti-
lizes this information to compute the shortest path to each destina-
tion. Harmony constructs and maintains the end-to-end paths over
multiple overlay hops using the source routing approach based on
shortest-path [10].

Harmony proactively recomputes overlay paths based on the per-
formance (e.g., delay or loss rate) of the hops that are currently
available. For a particular publisher-subscriber pair, Harmony pe-
riodically compares the performance of the currently used path

and the best possible path. If the delay performance of the can-
didate path shows improvement by a predefined threshold, then the
path switches to the better performing path. Note that the use of a
threshold, instead of always switching the path, serves the purpose
of avoiding path flapping, which is continuous switching between
paths when the delay changes frequently. Another parameter be-
sides the threshold that affects the agility of the system is how fre-
quently the path search is performed. To make the system respond
quickly to changes, the period should be adequately short.

2.2 Reactive QoS-aware routing
Harmony allows applications to specify QoS such as an end-to-

end delay requirement or deadline. While proactive best-path se-
lection improves the performance of paths periodically, it does not
consider whether the current path maintains the QoS requirement.
We extend proactive best-path with reactive QoS-aware routing that
monitors the performance of existing paths and reacts quickly when
QoS violation occurs. To achieve this, Harmony uses the QoS re-
quirements specified by the application to implement a delay bud-
geting mechanism. Since this mechanism has been included in our
earlier paper [21], we only briefly describe the mechanism. We
apply a heuristics in which latency margin (i.e. the difference be-
tween the delay requirement and the current end-to-end delay) is
divided among all links along a given path. Consider a topic with
the end-to-end delay requirement D, and the latency margin D−d,
where d the current measured delay along the path. Assuming the
path comprises of k links, we split the latency margin equally on
each link and thus the budget at link i becomes bi = (D − d)/k.
We perform this process for each topic. Observe that the budget
computed at each link for each topic provides an indication of the
topic’s urgency. Thus, we schedule the topics according to their
urgency. When Harmony identifies a budget violation at a link, it
immediately recomputes the paths and reroutes the traffic to main-
tain the QoS requirement.

The main difference between the proactive routing and the re-
active QoS-aware routing is that in the latter, rerouting is based
on the performance requirements of the application. The reactive
QoS-aware routing attempts to maintain the particular performance
that is required by the application. If the proactive routing is made
extremely aggressive (i.e. frequent periodic checking and small
threshold), the benefits of QoS awareness may be overshadowed.

2.3 Multipath
As we discussed above, IP paths can be interrupted, disconnected

or become extremely congested, effectively becoming unusable.
Unless messages are persisted, upon a link disconnection, all data
can be lost. Furthermore, if a disconnection happens, even with
persistence, message delivery can be delayed, causing QoS viola-
tions. Using multiple overlay paths to deliver messages can address
these issues effectively.

In Harmony, we provide two basic methodologies for construct-
ing a multipath. The first approach is that an application defines
the level of “availability” for any path between publishers and sub-
scribers. The availability is defined as the long term probability that
at a given time, at least one path exists between the pair of commu-
nicating end points. This requires knowledge of the availabilities of
the various links and nodes and can be extracted either by historical
data or by real-time monitoring. This approach may require an arbi-
trary number of paths to ensure the level of availability. The second
approach, which we employ herein, is based on selecting two par-
allel paths at any given time. We rank the paths based on their delay
(using the k-shortest paths algorithm [10]) and then select the two
shortest paths that maximize the availability by assuming a normal

distribution of failures across all nodes and links. If QoS is enabled,
we also restrict the shortest paths to those that meet the QoS. Note
that this technique will result in selecting disjoint paths, unless no
disjoint path combination satisfies the QoS. By sending redundant
messages through multiple paths, Harmony aims to achieve unin-
terrupted operation in case of failures.

2.4 Data transport layer
Harmony provides end-to-end QoS-aware messaging on top of

the data transport layer. For this paper, we use a home-grown
transport prototype called Tempore. We describe the key features
of Tempore in this section. Tempore provides pub/sub and point-
to-point messaging services over one-hop (direct link). Tempore
accepts messages from an upper layer and processes them for fast
and reliable delivery to a receiver or a set of receivers, either on
unicast or multicast transport. Tempore utilizes the available real-
time support in underlying platforms, such as RT OS or real-time
Java. In the most common setting, Tempore employs the services
of an Internet Protocol (IP) network. Thus, two IP-interconnected
nodes can exchange messages. In such an environment, Tempore
does not need to be present on the network routing components, but
it is sufficient that the endpoint nodes host a Tempore instance. An
automatic discovery mechanism allows publisher and subscriber
endpoints to discover each other. This enables the matching end-
points to connect. The Tempore discovery mechanism makes use
of UDP multicast capabilities if available. Otherwise, discovery
is performed through unicast, by transmitting discovery data to a
predefined list of network addresses.

Tempore provides QoS-aware messaging over a single overlay
hop. Applications can specify QoS properties for each topic. Avail-
able properties include timeliness, reliability, failover, resource man-
agement, transport protocol and wire format. For example, Tem-
pore timing guarantees cover the direct host-to-host communica-
tion. Within a process, the timing service starts when a message is
submitted to the transmitter in Tempore and ends when a message
is passed to the receiver in the layer above Tempore. If a timeliness
requirement is violated for any reason, the receiver-side application
is immediately notified.

Tempore also provides standard pub/sub messaging interfaces,
including JMS [16]. Using JMS allows Harmony clients (i.e., pub-
lishers and subscribers) and Harmony brokers to communicate via
a standard interface, thereby facilitating interoperability.

3. EVALUATION
We evaluate the performance of Harmony in a private computing

cloud infrastructure using 5 large virtual machines (VMs), each of
which has 4 cores, 6 GB memory and 70 GB hard drive. We deploy
a Harmony Broker on each VM and set the path delay to emulate
a wide-area network environment. In a real deployment, each Har-
mony broker would handle a domain, consisting of multiple pub-
lishers and subscribers. For our testbed, we put our publisher and
subscriber applications on the same machine as brokers for sim-
plicity. Publisher 1, 2, 3 are located on Node 2, 3, 4, respectively;
publisher ID denotes the topic ID. Each publisher sends out mes-
sages at the rate of 100 messages/sec. All nodes, except Node 2,
host one or two subscribers. Figure 1 shows the overlay path delay
and the publishers and subscribers on each node.

To measure the performance of Harmony, we use two metrics:
end-to-end delay and message loss. Both are defined on a per
subscriber-topic pair basis; si.tj denotes the topic j that is received
by the subscriber located at node i. The average end-to-end delay
is the average latency a message experiences from when it is sent
by its publisher, to when it is received by a subscriber. It includes

1 2

15

16

5 5

20 12

12

5
18

2

3

2 3

Publication

Subscription

1

2

34

3

5

6

1

1

Figure 1: Testbed setup, consisting of five nodes, shown as cir-
cles. Trapezoids show the topics that each node publishes and
subscribes to; the number inside of trapezoids denotes the topic
ID. The path delays are in milliseconds.

the network delays and processing delays over the messaging path.
The message loss rate is the percentage of messages that are pub-
lished but not received by the subscriber.

We emulate different network conditions, including dynamic path
delay and path failures. We use the delay shown in Figure 1 as the
default values. To emulate dynamic changes in path delay, which
happen when paths are congested, we increase the path delay of
some paths to a large value (e.g, 100 ms). To emulate path failures,
we set the packet loss rates on some paths to be 100%. We use the
Linux command /sbin/tc to set the path delay and packet loss
on a per destination IP basis.

Harmony employs multiple techniques and different combina-
tions of techniques can be enabled to address application require-
ments. We evaluate four different versions of Harmony through
combining techniques including proactive best-path routing (BP),
reactive QoS-aware routing (QoS), and multipath (MP). First, the
direct path (DP) serves as our baseline. It does not use the overlay
paths at all. Instead, messages are delivered by Tempore through
the direct path. Note, however, that in cases of path failure, the
sender will buffer messages and wait until the path resumes and
send them. Second, the best-path (BP) uses overlay paths in which
messages can flow through multiple overlay nodes towards the sub-
scriber. Periodically, the Harmony middleware tries to identify the
path with the minimum delay. (The period is set to 30 seconds.)
To avoid path flapping, the technique switches to a better path only
if the delay can be reduced by more than a threshold (set to 20%).
Third, the reactive QoS-aware routing on top of BP (BP+QoS) tries
to find the best path while at the same time maintain the QoS re-
quirements in respond to delay variations. In particular, budget as-
signment is performed end-to-end and whenever a QoS violation is
identified, it will attempt to find another path that meets the require-
ment. Finally, the multipath on top of proactive best-path and re-
active QoS-aware routing (BP+QoS+MP) encompasses the above
feature but further employs multipath to deliver messages with min-
imal interruption in the flow. Our overlay-based techniques rely
on the status information collected through ping-style probes, ex-
changed between neighbors every 5 seconds. These values are av-
eraged and broadcasted to the neighbors every 10 seconds.

3.1 Dynamic path delay
This section provides the performance when the delay changes

dynamically. We emulate the effect of cross traffic by increasing
the path delay temporarily. During each run, we change the path
delay 10 times, keeping the same delay values for three minutes. At
each change for each path, we increase the delay value to 100 ms
with probability of 0.12.∗ The QoS deadline for each topic is set to
50 ms. We repeat the experiment five times and report the average.
∗The probability value was chosen based on the findings presented
in [1], in which about this percentage of packets showed substantial
improvements using overlay compared to using the direct path.

Subscriber and Topic

s1.t1 s1.t2 s3.t3 s4.t2 s5.t1 s5.t3

L
a
te

n
c
y
 (

m
s
)

0

10

20

30

40

50
DP

BP

BP+QoS

BP+QoS+MP

Figure 2: Latency under dynamic path delay

Sub.Topic Direct path between Degradation
s1.t1 node 1 - node 2 10
s1.t2 1 - 3 9
s3.t3 3 - 4 3
s4.t2 3 - 4 3
s5.t1 2 - 5 8
s5.t3 4 - 5 4

Figure 3: Number of path degradation during five runs. For
each subscriber-topic pair, the table shows how many times the
direct path between the publisher and subscriber for that topic
experiences degradation (either in terms of delay or loss).

Figure 2 shows the latency of different versions when the path
delay changes. DP obviously has the largest latency because it only
uses the direct overlay path; when the direct overlay path experi-
ences an increased delay, the latency is increased. BP approach
could not always handle increased delays effectively because it
checks for a better path only periodically. BP+QoS version shows
smaller delay than BP. This is because an increase in delay immedi-
ately causes a QoS violation; the path delay is increased to 100 ms,
which is much larger than the deadline requirement of 50 ms. Thus,
Harmony reroutes the affected flows immediately when the delay
is increased. BP+QoS+MP version has a slightly shorter latency
than BP+QoS version; the improvement comes from maintaining
two paths simultaneously and always delivering first the messages
that traversed the fastest of the two paths.

There are different magnitudes of performance gains achieved by
BP+QoS+MP over DP across different subscriber-topic pairs. This
is because the number of path degradations between different pub-
lisher and subscriber pairs are different. Figure 3 shows the num-
ber of degradations that the direct path between each publisher and
subscriber experiences during five runs. The performance gain is
larger for s1.t1, s1.t2 and s5.t1 because those subscriber-topic pairs
experience 8-10 degradations while the other three only experience
3-4 degradations.

To provide a deeper insight into the behavior of different ver-
sions, we chose one subscriber-topic pair, s5.t1, and looked into the
CDF of latency across messages. We include the latency measure-
ments from five runs. During five runs, this pair experienced the
delay increase 8 times out of 50 three-minute slots. Figure 4 shows
CDF of latency across around 980,000 messages. Both BP+QoS
and BP+QoS+MP versions were mostly not affected by the in-
creased delay, while roughly 22% of messages in DP version and
16% of messages in BP version were severly affected (having la-
tency larger than 100 ms). The short flat area in the beginning of
all curves is anomaly observed during the issue of tc command;

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

F
ra

c
ti
o
n
 o

f
m

e
s
s
a
g
e
s
 (

C
D

F
)

Latency (ms)

BP+QoS+MP
BP+QoS

BP
DP

Figure 4: CDF of latency across around 980,000 messages of
s5.t1, during five runs.

 0

 20

 40

 60

 80

 100

 120

3230282624222018161412108642

L
a
te

n
c
y
 (

m
s
)

Time (minutes)

DP
BP+QoS

Figure 5: Latency across time of s5.t1. The path delay is in-
creased to 100 ms three times during this one run.

less than 1% of messages have the latency less than the path delay
(12 ms).

Figure 5 shows the latency over time for two representative ver-
sions, DP and BP+QoS, during one 33-minute run. To make the
graph readable, only every 1000th messages are included in this
graph. During this run, the delay increased to 100 ms three times.
During degradations, latency of DP increased to 100 ms, while
BP+QoS version produced much shorter latency by finding an al-
ternate path, which was not affected by path degradation.

3.2 Path failures
In this section, we consider how Harmony copes with path fail-

ures. Every three minutes, we fail a path with the probability of
0.12 and repeat this process 10 times during each run. Figure 6(a)
shows the average loss rate. Note that y-axis is drawn in log scale.
Not surprisingly, DP shows huge loss rate (10.0%-16.4%) because
when the direct path fails, all the messages are lost. BP and BP+QoS
both lose some messages (0.7%-1.5%) while they are discovering
the failure and finding alternative multi-hop paths. BP+QoS+MP
has the lowest loss rate (< 0.2%) because messages are sent through
two paths in parallel; even when one of the paths fails, the other
path successfully delivers messages almost always. With multipath,
the loss rate is mostly zero, but it is nonzero for a few subscriber-
topic pairs who experienced path failures on both paths simultane-
ously. Although multipath cannot guarantee no loss of messages,

Subscriber and Topic

s1.t1 s1.t2 s3.t3 s4.t2 s5.t1 s5.t3

L
o

s
s
 R

a
te

 (
%

)

0.1

0.4

1

2

4

8

16 DP

BP

BP+QoS

BP+QoS+MP

(a) Loss rate

Subscriber and Topic

s1.t1 s1.t2 s3.t3 s4.t2 s5.t1 s5.t3

L
a
te

n
c
y
 (

m
s
)

10

20

40

2000

4000

8000

(b) Latency

Figure 6: Loss rate and latency under path failures

Message size (Byte)

10 100 1000

T
o
ta

l
tr

a
ff
ic

 (
M

B
)

0

100

200

300

400

500

600
control

header

content

BP+QoS+MP

BP+QoS

DP

BP+QoS+MP

BP+QoS

DP

BP+QoS+MP

BP+QoS

DP

Figure 7: Overhead. Comparison of the total traffic generated
by the two versions of Harmony under static delay.

it assures almost uninterrupted operation even under severe failure
scenarios.

One way to avoid message loss is to use a persistent data trans-
port layer. Most messaging transport services including Tempore
provide both persistent and non-persistent modes of operation. When
the persistent mode is chosen, all messages are written to disk.
However, this introduces extra delay for all messages because disk
access is costly. Thus, we use the non-persistent mode of Tempore
in all our experiments. However, to show the effect of using the per-
sistent mode of Tempore, we also run the DP version with persis-
tent Tempore. In this case, DP has loss rate of 0%, but the delivery
delay is unacceptably large, especially with respect to responsive
applications. Figure 6(b) shows the latency when the paths expe-
rience failures. The y-axis is again drawn in log scale. In case of
DP with persistent Tempore, all messages are persisted during the
path failures, and messages are sent to the subscribers when a path
recovers from a failure. The delay of the other three versions, with
non-persietent Tempore, are much smaller than that of DP.

3.3 Overhead

In this section, we consider the overhead in terms of traffic. We
present the results of DP, BP+QoS, and BP+QoS+MP; we omit the
result of BP version because it is very close to that of BP+QoS. We
perform the experiment for three different message sizes (i.e., pay-
load) and show the overhead of control, data payload and header.
The control overhead includes messages used for connection estab-
lishment and maintenance between publishers and subscribers in
the data transport layer. In case of BP+QoS and BP+QoS+MP ver-
sions, it also includes path monitoring, overlay path construction
and maintenance. The experiment runs for 300 sec with a rate of
100 messages/sec for each of the publishers-subscriber pairs. The
path delay is static, as shown in Figure 1.

Figure 7 shows the total traffic generated across different payload
sizes. The first observation is that the message size does not affect
the control or message header overhead. Across different message
sizes, only the message payload (content) is increased, while the
size of the header remains the same; the control messages are also
independent of message payload. Thus, because the total number
of messages sent is the same across different message sizes, the
control and message header overhead remain the same. Second,
we observe that in comparing DP and BP+QoS, the control over-
head traffic to maintain multi-hop paths is small. We observe that
the data traffic for BP+QoS is slightly higher than DP. In general,
this difference depends on how often indirect paths are chosen over
direct paths. Third, the overall control overhead for the BP+QoS
and BP+QoS+MP versions is reasonably small. The total control
traffic for all message sizes is about 7.8 KB/sec for BP+QoS and
26.6 KB/sec for BP+QoS+MP. Since we have 6 subscribers, the
control traffic is about 1.3 KB/sec and 4.4 KB/sec per subscriber for
BP+QoS and BP+QoS+MP, respectively. Fourth, the BP+QoS+MP
version has higher control and header overhead and also higher data
traffic. For this version, the control overhead increases by 3-4 times
due to the messages for maintaining the additional path. A sec-
ondary parallel path is generally longer in hops thus requiring more
maintenance overhead than the primary path (i.e. single-hop, direct
path versus a multi-hop indirect overlay path). Similarly, the data
overhead of BP+QoS+MP is about 2-3 times that of BP+QoS ver-
sion (which uses single path) because multiple copies of the same
message are sent over parallel paths.

4. RELATED WORK
Approaches to latency-aware delivery for pub/sub overlay net-

works are studied in [9, 6]. The authors in [9] propose a tech-
nique to dynamically update the broker overlay topology to im-
prove event dissemination latency for applications involving mo-
bile clients. Using the pub/sub middleware JECho [22], they com-
pare their opportunistic overlay topology to a static topology and
show that end-to-end latency can be substantially improved when
the broker overlay is changed to minimize the path lengths between
mobile publishers and subscribers. However, their approach does
not provide a mechanism to specify a latency requirement, nor a
means to monitor and control latency performance relative to the
requirement. IndiQoS [6] uses a resource reservation approach to
provide latency awareness. As its underlying pub/sub middleware
it uses Bamboo, a Distributed Hash Table, to perform broker over-
lay routing [20]. While having the benefits of low signaling over-
head, IndiQoS assumes that the underlay supports a mechanism
to reserve resources for latency and bandwidth in the paths of the
overlay—an assumption that is not usually valid for an Internet-
scale overlay. In addition, IndiQoS assumes a stable network; that
is, once resources are reserved, it is assumed that latency and band-
width will remain satisfied for all active flows. IndiQoS does not
consider latency awareness during periods of delay performance

degradation, path failure, and broker failure.
Availability has been studied well [19, 8, 5, 18, 15, 12]. Similar

to Harmony, these approaches seek to provide availability through
fault detection, where the underlying physical network’s perfor-
mance is measured using periodic heartbeats. When a failed path
or broker is detected, an alternative path is selected that avoids the
failed broker or path. Harmony also uses the pairwise heartbeats
to maintain path state for the measured delay, which Harmony em-
ploys to satisfy latency constraints when used in conjunction with
priority scheduling. Thus, Harmony exploits underlay-aware tech-
niques to provide more comprehensive control over QoS than these
prior work.

Reliable message delivery using pub/sub overlays has been con-
sidered in [3, 17]. These papers propose an exactly-once, in-order,
guaranteed delivery service using a content-based pub/sub. These
approaches are orthogonal to Harmony because they do not con-
sider latency-aware delivery and they are primarily suited for rea-
sonably stable environments, such as data centers. In contrast, the
QoS-aware techniques used in Harmony are designed to address
WAN dynamics.

5. CONCLUSION
This paper presented empirical results to demonstrate the effi-

cacy of using different latency-aware techniques to provide respon-
sive messaging in a wide-area network, across autonomously ad-
ministered domains. These techniques—proactive best-path, reac-
tive QoS-aware, and multipath—were implemented in a messag-
ing middleware, Harmony, and evaluated under various network
conditions. The results demonstrated that each technique yields its
strongest benefit under specific network conditions and by using all
techniques in a coordinated fashion, Harmony provides a robust re-
sponsive messaging solution. When there is significant variability
in the link delays, reactive QoS-aware path selection on top of best-
path has superior performance. When packet loss is prevalent, the
reactive approach is not always effective and multipath selection is
the preferred choice to satisfy QoS requirements.

Acknowledgment
We would like to thank the following people who have contributed
to or helped with the Harmony project: Donald Fox, Gidon Ger-
shinsky, Paul Giangarra, John Hawkins, Francis Parr, Wim De Pauw,
Dave Renshaw, Chris Sharp, and Hao Yang.

6. REFERENCES
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient overlay networks. In Proceedings of the 18th SOSP,
pages 131–145, Banff, Canada, October 2001. ACM.

[2] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan.
Best-path vs. multi-path overlay routing. In Proceedings of
the Internet Measurement Conference, pages 91–100,
Miami, FL, October 2003. ACM SIGCOMM.

[3] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach.
Exactly-once delivery in a content-based publish-subscribe
system. In Proceedings of DSN, pages 7–6, Bethesda, MD,
June 2002. IEEE/IFIP.

[4] B. Blakeley, H. Harris, and R. Lewis. Messaging and
queueing using the MQI. McGraw-Hill, Inc., New York, NY,
1995.

[5] F. Cao and J. P. Singh. MEDYM: match-early with dynamic
multicast for content-based publish-subscribe networks. In
Proceedings of Middleware, pages 292–313, Grenoble,
France, November 2005. Springer-Verlag New York, Inc.

[6] N. Carvalho, F. Araujo, and L. Rodrigues. Scalable
QoS-based event routing in publish-subscribe systems. In
Fourth IEEE International Symposium on NCA, pages
101–108, Cambridge, MA, July 2005. IEEE.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19(3):332–383, 2001.

[8] R. Chand and P. Felber. XNET: a reliable content-based
publish/subscribe system. In Proceedings of the 23rd IEEE
International Symposium on RDS, pages 264 – 273,
Florianpolis, Brazil, October 2004.

[9] Y. Chen and K. Schwan. Opportunistic overlays: efficient
content delivery in mobile ad hoc networks. In Proceedings
of Middleware, pages 354–374, Grenoble, France, November
2005. Springer-Verlag New York, Inc.

[10] E. de Queirós Vieira Martins and M. M. B. Pascoal. A new
implementation of Yen’s ranking loopless paths algorithm.
4OR, 1(2):121–133, 2003.

[11] E. Di Nitto, D. J. Dubois, and R. Mirandola. Overlay
self-organization for traffic reduction in multi-broker
publish-subscribe systems. In Proceedings of the 6th ICAC,
pages 61–62, Barcelona, Spain, June 2009. ACM.

[12] C. Esposito, D. Cotroneo, and A. Gokhale. Reliable
publish/subscribe middleware for time-sensitive
internet-scale applications. In Proceedings of the Third ACM
International Conference on DEBS, pages 1–12, Nashville,
TN, July 2009. ACM.

[13] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, June 2003.

[14] T. Fei, S. Tao, L. Gao, and R. Guerin. How to select a good
alternate path in large peer-to-peer systems? In Proceedings
of the 25th IEEE INFOCOM, pages 1 –13, Barcelona, Spain,
April 2006.

[15] H. Jafarpour, S. Mehrotra, and N. Venkatasubramanian. A
fast and robust content-based publish/subscribe architecture.
In Seventh IEEE International Symposium on NCA, pages 52
–59, Cambridge, MA, July 2008.

[16] JMS. Java messaging service.
http://java.sun.com/products/jms/.

[17] R. Kazemzadeh and H.-A. Jacobsen. Reliable and highly
available distributed publish/subscribe service. In 28th IEEE
International Symposium on Reliable Distributed Systems,
pages 41 –50, Niagara Falls, NY, September 2009.

[18] M. Kumar S.D and U. Bellur. An underlay aware, adaptive
overlay for event broker networks. In Proceedings of the 5th
Workshop on Adaptive and Reflective Middleware, page 4,
Melbourne, Australia, November 2006. ACM.

[19] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed
event-based middleware architecture. In Proceedings of the
1st international workshop on Distributed Event-Based
Systems, pages 611–618, Vienna, Austria, 2002. ACM.

[20] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proceedings of the USENIX Annual
Technical Conference, Boston, MA, June 2004.

[21] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei.
Message-oriented middleware with QoS awareness. In
Proceedings of the 7th International Joint Conference on
Service-Oriented Computing, pages 331–345, Stockholm,
Sweden, November 2009. Springer-Verlag.

[22] D. Zhou, K. Schwan, G. Eisenhauer, and Y. Chen.
JECho-interactive high performance computing with Java
event channels. In Proceedings of 15th IEEE IPDPS, San
Francisco, CA, April 2001. IEEE Computer Society.

