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Abstract. There is increasing interest in location-aware systems and applica-
tions. It is important for any designer of such systems and applications to un-
derstand the nature of user and device mobility. Furthermore, an understanding
of the effect of user mobility on access points (APs) is also important for de-
signing, deploying, and managing wireless networks. Although various studies
of wireless networks have provided insights into different network environments
and user groups, it is often hard to apply these findings to other situations, or to
derive useful abstract models.

In this paper, we present a general methodology for extracting mobility informa-
tion from wireless network traces, and for classifying mobile users and APs. We
used the Fourier transform to convert time-dependent location information to the
frequency domain, then chose the two strongest periods and used them as parame-
tersto aclassification system based on Bayesian theory. To classify mobile users,
we computed diameter (the maximum distance between any two APs visited by
auser during afixed time period) and observed how this quantity changes or re-
peats over time. We found that user mobility had a strong period of one day, but
there was also alarge group of users that had either amuch smaller or much big-
ger primary period. Both primary and secondary periods had important roles in
determining classes of mobile users. Users with one day as their primary period
and a smaller secondary period were most prevalent; we expect that they were
mostly students taking regular classes. To classify APs, we counted the number
of usersvisited each AP. The primary period did not play acritical role because
it was equal to one day for most of the APs; the secondary period was the de-
termining parameter. APs with one day as their primary period and one week as
their secondary period were most prevalent. By plotting the classes of APs on
our campus map, we discovered that this periodic behavior of APs seemed to be
independent of their geographical locations, but may depend on the relative lo-
cations of nearby APs. Ultimately, we hope that our study can help the design of
location-aware services by providing a base for user mobility models that reflect
the movements of real users.

! Thistechnical report isacorrected version of the paper appeared in Proceedings of the Interna-
tional Workshop on Location- and Context-Awareness (LoCA), Germany, May 2005. Springer-
Verlag.



1 Introduction

Wireless networks have become popular and are getting more attention as a way to
provide constant connectivity over a large area in cities and as an inexpensive way
to provide connectivity to rural areas. The growing popularity of wireless networks
encourages the devel opment of new applications, including those that require quality of
service (QoS) guarantees. To provide QoS, it is often useful to predict user mobility. We
also need simulators of wireless network environments to test these new applications
and these simulators require user mobility models.

As more mature wireless networks become available, several studies of wireless
networks have been published, including studies of a campus [4, 5], a corporate envi-
ronment [2], and a metropolitan area [8]. Although these studies help us to understand
characteristics of different network environmentsand user groups, it is often difficult to
apply the findings of these studies to other applications.

In this paper, we introduce amethod to characterizereal wireless network traces and
classify different mobile users based on their mobility. We transform our traces using
the Discrete Fourier Transform (DFT) to make them independent of the particular time
that traces were gathered. This transform exposes periodicity in traces.

We then use AutoClass [3], an unsupervised classification tool based on Bayesian
theory. Classification is important because user mobility differs widely from user to
user [2]. Thus, it is difficult to describe diverse user mobility patterns with a single
model. Classification breaks down this complex problem into several ssmpler ones, by
dividing usersinto groupsthat have common characteristics and thus might be modeled
similarly. Moreover, classification isimportant because a collection of individual cases
has little predictive power for new cases.

Inthe second part of this paper, we focus on the behavior of access points (APs). We
apply our method to extract information from real wireless network traces and classify
APs. Understanding the behavior of APs is important for many applications, such as
traffic engineering for APs and resource provisioning for QoS sensitive applications.

An important benefit of using the Discrete Fourier Transform is that it is easy to
compute the inverse DFT to obtain the time series. After clustering instances based
on the information extracted from DFT, we can construct a sequence of numbers cor-
responding to the power spectrum representative of each class. We can then use an
inverse DFT to obtain the time series that representsthat class. Thismethodis also used
by Paxson [6] to synthesize approximate self-similar networks. We leave this modeling
process as future work.

2 Methodology

In this section, we describe our traces and the parameters that we have chosen to repre-
sent user mobility and behavior of APs. We then describe how we converted our traces
from the time domain to the frequency domain using a Fourier Transform and how we
classified users and APs using AutoClass.



2.1 Tracecollection

We collected syslog traces of APs from the Dartmouth College campus-wide wireless
network. The APs record client events (such as authenticating, deauthenticating, asso-
ciating, disassociating, and roaming) by sending syslog messages to a central server,
where the logs are timestamped with a one-second granularity. Currently, most of the
APs on our campus are Cisco 802.11b APs. Although they are in the process of being
replaced by Aruba APs, we focus on Cisco APs because at the time of the study they
were still the dominant set of APs and covered most of the campus.

We have been collecting syslog records since 476 Cisco APs were installed in 2001.
In this paper, we focus on four weeks of traces collected from October 3 to October 30,
2004. During these four weeks, we saw 7,213 devices (i.e.,, MAC addresses) visiting
469 APs. In the following discussion, we refer to a MAC address as a user, athough a
user may own more than one device with a wireless network interface. We expect that
most of the devices are laptops, based on the previous study over the traces collected at
Dartmouth [4]. We saw roughly 4.5 million syslog events, of which 1.9 million events
represent devices associating or reassociating with APs.

2.2 Parameter selection

To cluster users or APs we must choose an appropriate parameter.

Diameter as mobility measure. Onelimitation of our study isthat we do not have the
exact geographical location of a user. We only have the information about the location
of APson our campusand the APwhich auser isassociated with. Thus, we approximate
auser’slocation using the location of the AP with which the user is associated. Because
many areas are covered by more than one AP, some clients change association from an
AP to another even when they do not physically move. Sometimes a client associates
repeatedly with afixed set of APs, a phenomenonwe call the ping-pong effect.

The ping-pong effect cannot happen across two APs that are apart farther than a
certain distance because APs have limited coverage, but this distance is often hard to
pinpoint. The Cisco specification states that theindoor range at 11 Mbpsis 39.6 meters
and the outdoor rangeis 244 meters. Obviously, aping-pong effect is extremely unlikely
between two APs that are more than 244 meters apart, but choosing this value as the
threshold is too aggressive, filtering out too many user movements. Because different
APs are configured differently and located in different environments, it is hard to define
a precise distance threshold to decide whether a change between two APsis due to the
ping-pong effect or not. Although Henderson [4] defined the limit as 50 meters, in our
traces we found that some clients ping-pong between two APs more than 50 meters
apart. Thus, we do not use a threshold to filter out ping-pong effects, but choose a
parameter that is less sensitive to them.

Our goal isto classify wireless network users based on their mobility patterns. Our
traces list events at a particular AP with a particular mobile user. We first gathered the
events associated with each user. Although the events are recorded with a one-second
granularity, we aggregated them into one value for each hour. We considered several
aternatives to represent this value. Because of the ping-pong effect, the total distance



traveled (the sum of the distance between APs visited, in sequence) often does not
reflect user mobility. A user may appear to travel a long distance if he experiences
many ping-pong effects even though he did not move at all. A better measure is the
diameter, defined as the maximum Euclidean distance (i.e., the straight line distance
between two points) between any two APs visited during a fixed time period. Although
we still cannot tell whether a diameter is due to real user movements or ping-pong
effectswhen it is short, we can at least be confident that it is caused by real movements
when a diameter is longer than a certain distance.

Number of usersto describe APs. For APs, we used the same set of traces, but gath-
ered the events associated with each AP. Then, we counted the number of unique users
visiting each AP during each hour. By counting the number of unique users instead of
the number of user visits, we remove noise caused by ping-pong effects.

2.3 Filteringtraces

We found it was necessary to filter the traces to select the most meaningful data.

Mobility. Inour traces, many users do not move at al, and many others appear in the
traces for a short time and disappear. Because we want to find meaningful patterns of
user mobility, we need to remove these stationary and transient users. We removed any
user who did not move or did not connect to wireless network for a 3-day or longer
period. We chose three days based on the assumption that regular mobile users are
unlikely to stay at one place for more than three days. They may stay at one place for
the weekend; thus using two days as the filtering limit may be too aggressive. We also
filtered out the users whose hourly diameter never exceeded 100 meters. Note that we
did not filter out the diameters shorter than 100 meters; we filtered out the users. This
filtering reduced the number of users from 7,213 to 246; thus our study focuses on the
relatively rare “ mobile users”

APs. There are many APs on our campus that are not actively used. To remove these
APs, we filtered out the APs that never had more than 50 visitors during a hour. This
filtering reduced the number of APsfrom 469 to 216.

2.4 Discovering Periodic Events

For each user, we create a 672-element vector that represents the user mobility (i.e.,
diameter) of each hour for four weeks. Our goal is to classify users according to their
mobility patterns. Finding similar patterns by comparing these diameter vectorsdirectly
is not trivial. For example, the same mobility patterns may appear with more than one
user, but they may be shifted intime or scaled. Also, we are not interested in discovering
the exact value of diameter at a physical time.

To preserve the diameter but discount for shifts in absolute time, we used the Dis-
crete Fourier Transform (DFT) to transfer our parameters from the time domain to the



frequency domain. Since the Fourier Transformiswell known, we only briefly describe
it here, borrowing a description from Numerical Recipesin C [7]. Suppose that we have
afunctionwith N sampled values:

he = h(ty), te=kA, k=0,1,2,..,N—1. (1)

A denotes the sampling period; it isonefor our case. The DFT estimates values only at
the discrete frequencies:

Jn = =—-N/2,—(N/2—-1),..,N/2—1,N/2 2

"o
NA’
where the extreme values of n correspond to the lower and upper limits of the Nyquist
critical frequency range. Then, the DFT of NV points i, is defined as following:

N-1 N-1
H, = h/k€271'7/fntk _ E hke%mk’n/N. (3)
k=0 k=0

Agrawal [1] has shown that a few Fourier coefficients are adequate for classifying
Euclidean distances. He chose thefirst two strong, low frequency signals. Based on this
study, we chose the two strongest frequency (or period) signals as our parameters for
our classification of user mobility.

25 Clustering

To classify user mobility patterns, we use AutoClass [3], a classification system based
on Bayesian theory. A key advantage of this system is that it does not need to specify
the classes beforehand, allowing unsupervised classification. We had, and needed, few
preconceptions about how our mobility data should be classified.

AutoClass takes fixed-size, ordered vectors of attribute values as input. Given a
set of data X, AutoClass seeks maximum posterior parameter values V' and the most
probableT" irrespective of V', where V' denotesthe set of parameter valuesinstantiating
a pdf and T' denotes the abstract mathematical form of the pdf. First, for any fixed
T specifying the number of classes and their class models, AutoClass searches the
space of allowed parameter values for the maximally probably V. Second, AutoClass
performs the model-level search involving the number of classes .J and alternate class
models T}. It first searches over the number of classes with asingle pdf 7'; common to
all classes. It then tries with different 7'; from classto class.

3 User Mobility

In this section, we present the result of user mobility patterns converted from the time
domain to the frequency domain. We then show the classification of mobile users gen-
erated by AutoClass.
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Fig. 1. Hourly diameter and APsvisited by one user. Thisfigure shows the user’s hourly diam-
eter and the number of unique access points visited by this user during each hour. Labels on the
x-axis indicate the dates for Sundays.

3.1 Mobility patterns

To illustrate our method, we choose one typical user from our traces. The diameters of
this user in the time domain and frequency domain are shown in Figure 1 and Figure 2,
respectively.

Figure 1 showsthe diameter of each hour of one user and the number of unique APs
visited by the user during each hour over four weeks. The x-axis shows the dates for
Sundays, and the y-axis shows the diameter and the number of APs. Thisuser often had
adiameter of 40 meters. By looking into the traces, we found that the user was visiting
afixed set of APs repeatedly: the ping-pong effect. While shorter diameters are due to
ping-pong effects, longer ones represent real movements.

Note that the number of unique APs does not necessarily correlate with the diam-
eter: athough the number of APs may indicate mobility, it cannot distinguish whether
an increase in number is due to real movements or due to the ping-pong effects. Even
when this user associated with up to four APs, the diameter was still around 40 meters.
On the other hand, in the third largest peak where the user moved around 240 meters,
he only visited two unique APs. Thus, the number of APs visited by the user is not
appropriate to describe mobility.

Figure 2 showsthe DFT of thisusers' vector of diameters. The two most significant
periods are 24 and 224. This implies that user mobility patterns are likely to repeat in
these periods.

We transformed all of our users' diameter vectors using the DFT and recorded the
two strongest periods. Figure 3 shows the cumulative fraction of users with different
periods as their first and second strongest periods. For the strongest period, the biggest
jump is approximately around 24 hours. The distribution also has smaller jumps at the
following hours: 84 (3 days and 12 hours), 168 (one week), 224 (9 days and 8 hours),
and 336 (two weeks). Note that by using the DFT, we can observe a jump only at the
period that is an integer fractions of the input length (672). We were not surprised to
see users with one day, one week, or two weeks as their primary periods. But, it is
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Fig. 2. Diameter in frequency domain. Two dots denote the two most strongest periods. In this
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Fig. 3. Significant periods of user mobility. Cumulative distribution of the number of users
versus period. From the power spectrum density graphs, we recorded the two most significant
periods for each user.

interesting to observe more users with 3-days-and-12-hoursthan 4 days. The users with
the period of 9-days-and-8-hoursinstead of 9 or 10 days may be an artifact from using
the DFT because neither the period of 9 nor 10 days is an integer fraction of 4 weeks
while that of 9-days-and-8-hoursis an integer fraction; it is nonetheless interesting to
observe users with this period as their primary or secondary periods.

3.2 Classification

We use the two strongest periodsas our first two elements of three-element input vectors
to AutoClass. In addition to these two periods that we gathered from the DFT, we also
measured the maximum hourly diameter (d ,,....) Observed over our traces for each user.
Asdescribed in Section 2.3, wefiltered out userswhose d ,,, ., Waslessthan 100 meters;
this removed most of the stationary users.



Class|Instances|Instances|  Key Period 1 Period 2 Diameter

(#) (%)|Parametery Mean Std  CV|Mean Std CV| Mean Std CV
74 301 p2 431 678 157.3 194 7.8 402 2791 941 60
75 305 pl 237 38 160 58 33 56.9 3126 101.0 58
12 171 pl 238 46 193 410 347 846 1849 90.2 87
23 92| pl 30 07 233 38 19 500 3247 1134 6.3
13 53 p2 103.9 81.7 78.6| 118.2 559 47.3 228.7 885 6.9
15 6.1 p2 230 34 14.8] 264.7 80.4 30.4| 318.6 105.7 59
4 17, p2 56 0.7 125/ 209.7 28.0 134 255.1 1189 84

o, wWNEO

Table 1. Classes of user mobility. Mean, standard deviation and coefficient of variation (%) of
each parameter are listed. Period isin hours and diameter isin meters.

AutoClass classified mobile users into seven classes. Table 1 shows the number of
instances that fell into each class and the parameters that most influenced class assign-
ment. The table also shows the mean and standard deviation of parameters of members
within each class. Although parameters with smaller coefficient of variation (CV) often
play animportant rolein class assignment, thisis not necessarily true. It ishow muchthe
parameter value of an instance is different from those of othersthat determines whether
the parameter plays a critical role in class assignment. Note that our third parameter
dma Never played the mgjor role in assigning instances to classes.

Figure 4 shows how classes are clustered in three dimensions in different perspec-
tivesfor a better view. We first notice that there are many userstightly clustered around
one day as their primary period. At the same time, there are many others for which
one day was not their strong period. The first group of people with a strong one-day
period make up classes 1, 2, and 5, while the second group of people make up the rest
of classes.

First, we consider the group of users that have a strong one-day period. This group
of people are divided into three classes based on the secondary period; classes 1, 2, and
5 correspond to small, mid-range, and big secondary periods as shown in Figure 4(c).
Class 1 represents users who have one day as their strongest period and a small sec-
ondary period. Students who have regular classes may exhibit this kind of mobility
behaviors. The average second period for class 2 is close to two days. The average for
class5iscloseto 11 days, but this value is misleading; secondary periods of this class
are bimodal around one week and two weeks. Thus, class 5 can be described as a clus-
ter of users with one day and either one or two weeks as their strong periods. Note that
mobile users with one day as their strongest period and a small secondary period are
most prevalent—Class 1 is the biggest class.

Second, we look into the group of users whose primary period is not one day. These
users are divided into four classes. As shown in Figure 4(d), classes 3, 0, 4, and 6
have smallest to biggest secondary periods, respectively. Class 6 consists of users with
the very small primary periods and 9-days-and-8-hours as the secondary period. It is
interesting to note that most of the users whose primary period is not one day have
their secondary period close to one day—Class 0 is the biggest class among these four
classes.
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Fig. 4. Clustered users

4 Access Points

We now use the same method to classify APs based on how busy they are.

4.1 Periodicity

Figure 5 shows the cumulative distribution of the number of APs with primary and
secondary periods: 85% of APs had their primary period at one day (24 hours); 25% of
APs had their secondary period at 1 week (168 hours). Compared to the mobility traces,
more APs have their primary period at one day and the secondary period at one week.

4.2 Classification

As input to AutoClass, we used three parameters: the period at which power is maxi-
mum, the period at which the power is second to maximum, and the maximum number
of usersthat an AP serviced during any hour, u 4.

Table 2 shows the number of cases that resulted in each class. AutoClass classified
theinput casesinto four classes. Thelast parameter (u,,4.) did not make any difference
in classifying the input cases. Thus, we do not include it in the table. The determining
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Fig. 5. Significant periodsof APs. Cumulative distribution of APsversus period. From the power
spectrum density graphs, we recorded the two most significant periods for each AP.

Class|Instances|Instances| Key Period 1 Period 2
# (%)|Paramete; Mean Std CV|Mean Std  CV
0 99 45.8 p2 238 1.7 7.1] 1586 67.9 428
1 68 315 p2 240 00 O 116 23 198
2 28 13.0 p2 254 104 409 283 69 244
3 21 9.7, p1 165.1 97.4 59.00 90.0 97.7 108.6

Table 2. Classes of access points

parameter for the first three classes was the secondary period (p2). Thisis because the
primary period (pl) was equal to 24 hours for most of the cases, and therefore did not
play acritical rolein determining to which class a case belongs.

Figure 6 shows each instance in three dimensions in two different perspectives.
Because w4, did not play a major role for classification, we do not include it in this
graph. Instead, we include the probability of an instance being in a particular class as
the third axis. AutoClass computes this probability, for each instance, which indicates
the likelihood that an instance is a member of a class. If this probability is one, that
instance is a strong member of the class. Not surprisingly, the probability drops for the
instances in the regions where different classes meet.

Figure 6 showsthat most APs had their primary period at oneday. It isalso clear that
classes 0, 1, and 2 had distinct secondary periods. Note that among these three classes,
class 0 had the most instances; this meansthat APswith one day astheir primary period
and around one week as their secondary period were the dominant category. Class 3's
primary period is much bigger than one day; its secondary periodis also big.

Figure 7 shows the geographical location of the APs on our campus. Many of the
Cisco APs on our campus have recently been replaced by Aruba APs. Because we focus
only on Cisco APs, Aruba APs are not included in the map. Out of 469 Cisco APs, we
do not know the locations of ten APs. Thus, only 459 APs are marked on the map.
Because we did not classify the APs who never had more than 50 users per hour, only
216 APs are classified. Note that APswithin a small geographical location, even within
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the same building, often had different patterns of behavior. Thus, characterizing APs
based on their geographical locations or type of building may be erroneous.

5 LessonsLearned

In the Fourier Transform, it is important to truncate data so that the input data is a
multiple of the period of the signal. Thisisthe reason that we used 4-week tracesinstead
of one-month; we truncated data to be multiple of one week (i.e., 168). For access
points, we tried both 4-week traces and one-month traces. With 4-week traces, an AP
had one day as the strongest period and one week as the second. When we used one-
month traces, we got the same value of one day for the first maximum, but got one week
and 12 hours for the second maximum instead of exactly one week.

After clustering data, it was important to visualize the result. Visualization helped
understanding how classes are divided and how each parameter contributes in distin-
guishing instances. But, it was not trivial to find the ‘right’ way to present clustered
data. We expect it will even be harder with longer traces and more input parametersfor
classification.

6 Conclusion and Future Work

In this paper, we present a method to extract information from real wireless network
traces and transform the time series to the frequency domain using the Fourier Trans-
form. We then extracted the two most significant periods and clustered instances us-
ing a Bayesian classification tool. Our study is unique in using Fourier Transform and
Bayesian theory to provideinsightsinto user mobility and behavior of access points.
This paper presents ongoing work, and we plan to pursue several extensions. First,
we would like to try our method with longer traces. We expect the trend will be similar
to our study presented here although there may be varieties depending on the long-term
academic schedules, such as when a term starts and ends. Second, we want to expand
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our study of APsto includethe newly deployed Aruba APs, but we must first update our
map data. Third, we plan to build generalized models for user mobility and activities
of APs. We believe that our method will help us build models by identifying the most
significant characteristics, by clustering users into groups that need different models
or different parameters, and by abstracting traces. Finaly, after successfully modeling
user mobility based on our real traces, we would like to build a simulator for wireless
network environments using our mobility model.
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